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Rectification:

This version of these proceedings are a rectified version of an earlier version of the
proceedings. The abstract EFFECTIVENESS ANALYSIS OF ANTI STICK-
SLIP TOOLS has been removed from the proceedings as it did not carry the full
consent of all partners involved in the research project from which the abstract
resulted. Authors agreed that some of the outcomes of the paper require further
investigations and clarifications.
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Foreword

This Colloquium is a follow-up of the meetings on the same topics, held at the
University of Liége, Belgium, in 2009, at the Eindhoven University of Technology,
The Netherlands, in 2012 and at the University of Minnesota, U.S.A., in 2014.
The “control” part of the name was added at the second Colloquium to underline
the two main themes.

For this Colloquium, four main domain themes were specified:

• Underbalanced Operations & Managed Pressure Drilling (UBO/MPD)

• Drill String Vibrations & Drilling Mechanics

• Geosteering & Borehole Propagation

• Drilling Automation & ROP Optimization

In keeping with the previous incarnations, however, most submissions have been
focused on drill-string vibrations.

It has been the aim of the organizing committee to strive for the correct
blend between industry and academia participation, and between the theoretical
depth and the practical relevance of the submissions. This to ensure that the
colloquium can provide an arena where the practitioners can learn what relevant
theoretical tools are available, while providing feedback so as to keep the research
focused and relevant to applications where it can provide value. Judging from the
content of these proceedings, we believe we have succeeded in this goal. It con-
tains both descriptions of problems encountered in the field, new developments
on known problems, as well as proposing novel solutions through employment
of sophisticated mathematical methods. Together, these proceedings, we truly
believe, reflect the state of the art of Nonlinear Dynamics and Control of Deep
Drilling Systems.

Ulf Jakob Flø Aarsnes, Nathan van de Wouw,
Emmanuel Detournay and Vincent Denoël
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Is it time to start using open source models
to solve drill string dynamics issues?

Paul Pastusek1 and Greg Payette2

1ExxonMobil Development Co., 2ExxonMobil Upstream Research Co.

1 Objective

The objective of modeling and measuring drilling dynamics and control systems
is to enable the industry to drill a round, ledge free hole, without patterns, with
minimum vibration, minimum unplanned dog legs, that reaches all directional
and geological targets in one run per section at the fastest penetration rate
possible.

2 Background

Starting in 1960 and before there have been hundreds of technical papers, models,
and experiments on drilling dynamics. The detailed equations of many of these
models have been published, but few have been re-used or extended except by
the original investigator or group. A few of the notable historical model papers
are: [4, 8, 9, 11, 16, 21, 22, 26, 27, 30, 31, 34, 35, 38, 47]. A brief literature
review found more than 160 highly relevant references. Several recent model
papers that are very well documented are: [1, 3, 5, 7, 12, 13, 14, 17, 20, 23, 24,
25, 29, 32, 33, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 52, 54, 55, 56, 58, 59, 60].

While the industrys understanding of dynamics has significantly improved
based in large part on the prior art, the models describing the system have
often been recreated from scratch by each researcher and often focus on just one
element of the system.

Compare this to the electronics industry, which created the open source pro-
gram SPICE (Simulation Program with Integrated Circuit Emphasis) in 1973
[48]. SPICE has allowed each research organization and commercial vendor to
add verifiable elements to SPICE that are usable by the entire industry to model
the complete system.
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The proposal is to create a Simulation Program for Understanding and solv-
ing Drilling Dynamics problems (SPUDD), or some other suitable acronym. It
should be open source containing reusable open source elements defined by re-
search organizations, tool vendors, and service companies. If each researcher and
user do not have to start from a blank sheet to recreate their own models this
will significantly speed up the industrys ability to create and maintain knowledge
on the system dynamics.

It is not enough to react to vibrations and hole quality issues once drilling
has started, but to design, model, and verify that the system will achieve these
objectives before the first bit goes through the rotary table. [10, 50]

3 Model Requirements

At highest level there are three things needed to make a model reusable:

• The model itself: open source code shared in a publicly available repository.

• A users guide: how to run the core software, how to extend software capa-
bilities (i.e., plug in new features, add new elements).

• A theory manual: to explain how the system works, its assumptions, and
known limitations.

Below are more detailed criteria that should be considered in development of the
general framework:

• Modeling Scope/Complexity: The development community will need
to determine appropriate scope for the numerical formulation. The for-
mulation(s) should be able to handle various levels of complexity. Below
are listed some basic categories that ought to be considered and expanded
upon by the development community:

– Soft-string without buckling:

∗ Quasi-static/steady-state (with or without rotation but no vibra-
tion)

∗ Dynamic frequency domain.

∗ Dynamic time domain.

– Soft-string with buckling based on buckling formulas:

∗ Quasi-static/steady-state (with or without rotation but no vibra-
tion).

∗ Dynamic frequency domain.
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∗ Dynamic time domain.

– Stiff-string:

∗ Quasi-static/steady-state (with or without rotation but no vibra-
tion).

∗ Dynamic frequency domain with linearization about a baseline
stiff-string solution.

∗ Dynamic time domain. Full non-linear solution at every time
step or linearization about some baseline stiff-string solution and
solved for dynamic perturbations (i.e., solve for the baseline so-
lution once or infrequently).

• Input Files: These define what data is required as input to the frame-
work and how to generate the input file(s). Text based input files with
data inputs arranged in a standardized readable format are probably the
most straight-forward means of providing the necessary inputs to the com-
putational engine of the framework. The input files will likely include the
following information:

– Wellbore parameterization.

– Drill string discretization.

– Material and geometric properties for drill string components.

– Drilling fluid properties.

– Bit-rock interaction inputs.

– Drill string environment interaction inputs.

– Boundary conditions at the surface and the bit.

• Output Files: Like the input files, it will be important to prescribe a
standardized format. Ideally, the format would be readable by a number of
visualization programs or could easily be reprocessed to be compatible with
such software (e.g., Matlab, Python, Tecplot, ParaView, EnSight, etc.). It
is expected that the output file will include the following information:

– Computed generalized displacements: displacements axial and lat-
eral; rotations bending and twist.

– Computed generalized internal forces: forces tension, shear; moments
bending, torque; contact forces; friction forces.

– Velocities and accelerations.

– Stresses.

3



The (discrete) output contained in the output files should be sufficient to
compute the state of the system at any point along the drill string at any
given time. This should further allow a user of the software to place virtual
sensors along the drill string.

• Post Processing / KPIs: It would be helpful for the development com-
munity to establish useful KPIs (key performance metrics) for interpreting
time-based simulation results. A general suite of signal processing tools
(spectral analysis, etc.) and energy approaches may prove to be useful for
such an effort.

• Stability: The computational framework should be numerically stable.
Sources of potential numerical instability may arise in: (a) the implementa-
tion of the contact problem when modeling bending effects (i.e., stiff-string
analysis) and/or (b) the time integration procedure adopted for modeling
dynamics.

• Accuracy: The framework should produce numerical results that accu-
rately approximate the governing equations of the system. The user should
be able to adjust the resolution of the spatial and temporal discretization
procedures, but in general the system framework should guide the user to
use the most appropriate discretization.

• Computational Efficiency: The framework should be computationally
efficient. Advanced modern computational procedures and open source
libraries should be adopted whenever possible. For example if the dis-
cretization procedure for the numerical framework leads to a sparse system
of linear algebraic equations, open source linear solvers should be used, see
for example Davis 1997 which describes the UMFPACK linear sparse equa-
tion solver (http://faculty.cse.tamu.edu/davis/suitesparse.html).
Parallel computing capabilities should be considered in all aspects of the
computational framework. The development community should seek to
find the most efficient algorithms for solving the stiff-string contact prob-
lem that is both stable and computationally efficient.

• Flexibility/Customization: The framework should be flexible enough
to be able to easily accommodate modifications. In particular, it should
be relatively straightforward to model custom elements or tools within the
drill string such as mud motors, axial oscillation systems, shock subs and
torsional-axial spring devices.

• Boundary Conditions: The framework should allow for the implemen-
tation of simple as well as complicated boundary conditions. A user of
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the software should be able to very easily implement custom boundary
conditions at the bit and BHA (bit-rock interaction, reamer tools) and at
the surface (rig compliance, auto-driller, active torsional damping, wave
motion and heave compensation systems).

• Along String Interactions with Environment: It should be easy to
implement interactions with the borehole (contact, different friction mod-
els), cuttings beds (friction) and drilling fluid effects. The framework
should be able to accommodate these interactions with the drilling sys-
tem in in the time domain or the frequency domain. For frequency domain
implementations, the along string interactions with the environment may
depend on prescribed excitation frequencies and potentially have a phase
angle offset relative to the excitation frequencies.

4 Contributions to Open Source Code

Who would contribute their core modules? Based on other open source initiatives
there are three common sources of main code, universities, national laboratories,
and private companies. Universities get the benefit of citation rights, industry
recognition, graduates with highly desirable skills. National labs already make
a fair amount of their source code open source. Companies who donate code
to open source often find it too expensive to support their private code and/or
that the code itself is not their key market advantage. A number of open source
software examples exist in the oil industry, just not yet in drilling [6, 15, 19, 39,
51, 53].

Theoretical extensions would come from a variety of sources. Universities
and students could validate and extend the base code. Some areas of study
might be: different stiff string methods of implementation, work on stability
improvements, and contact problems. Also, there are a host of friction laws that
have been proposed. Can these be measured and verified? Are any of these
significantly better than others?

New components and refinements of existing component models could be
published by vendors wanting to demonstrate the benefit of a particular tool to
get it more rapidly adopted into the industry and to understand its limitations.

The boundary conditions can be modeled by vendors for these systems and
these elements can be used and reused others. In addition, theoretical models of
ideal components can be tested to evaluate the effect of a proposed component
improvement.

A number of parameter studies could be completed by anyone in the user
group. These would increase the understanding of potential operational limits of
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tools and the system, identify best practices, as well as uncover potential model
limitations.

Modeling expertise would be distributed throughout the industry to univer-
sities, consultants, service companies, and operators.

5 Proprietary Models

Does this compete with or enhance proprietary models? Proprietary models
can and will always exists. Open source code and open source elements allow
individual users to run their proprietary tools and models and compare the
results to show the benefit of the extra fidelity. It is up to each company and
researcher to keep their individual intellectual property and to publish only what
they want to share.

However, with access to open source elements for the rest of the drill string
and boundary conditions, complex elements that currently have to be con-
structed from scratch by every researcher can be included in the models evalu-
ated to improve the fidelity of the results. These elements will have the benefit
of industry input and review.

Service companies can model the system to show how their tool affects the
entire system performance. When a product or service is commercialized it will
reduce the risks to operators, contractors, and service companies if the tools have
been run in a qualified simulation before running in the well. Once considered,
it seems unforgivable to run a tool in the ground without knowing its effects on
the entire system. To go back to the SPICE analogy, it would be as if a new
component were substituted in an electronic circuit, plugged in, and turned on
to see what will happen. In many cases it seems that this is what we do today
with new tool trials in the oilfield.

6 Third Party Experts

It is estimated that less than 10% of drill strings that are put into the ground
are modeled for dynamic stability. Making the code and elements open source
would make models that are easier to use and understand. The number of drill
stings evaluated will get significantly larger and there will be a growing need for
third party modeling services.

This framework provides the inputs, outputs and engine but still allows others
to wrap a user interface around it that is easy to use and best accommodates the
workflows of whoever the user is. An example of this from the software industry
is what Red Hat has done with Linux. They provide a product with support
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that leverages an open source operating system i.e., Linux. In short, operators
pay for the modeling expertise, the output and understanding, not the model
itself.

7 Challenges / Barriers

There are two barriers that are often cited: Intellectual Property and Liabil-
ity. The open source community has resolved the Intellectual Property issue by
making the original code the property of the original contributor with public
use rights given to everyone. GitHub is one sharing site where modifications and
improvements are tracked and credit is given to those who contribute to the code
improvements.

For drilling dynamics models there are many examples where all of the equa-
tions used in the code are published, just not the code itself. There is no IP held
back in these examples, publishing the code will just make it easier to extend
the original work rather than reproduce it. There are a number of ways to limit
the liability of publishing code. An example is the GNU General Public License.
It includes a long standing disclaimer of warranty and a limitations of liability.
The original version of this license dates to 1989 and the current version was
issued in 2007 [28].

8 The Next Steps

One study of open source initiatives evaluated those that succeeded vs those
that failed [57]. One of the keys to success was the industry standing and social
network of those proposing the effort. It is suggested that a guiding coalition be
formed from industry leaders in dynamics. Those willing to support this effort
could;

• propose joint papers for journals promoting this open source concept

• encourage use and reuse of the models

• review code

• review and critique published results

• provide mentorship to those getting started

Remaining steps are to:
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• Publish this effort in SPE, IEEE, ASME, Journal of Acoustics and Vibra-
tion, or other journals to ask for donations of code and attract talent the
cause.

• Set up a repository for code and documentation. GitHub is currently in use
for many open source initiatives and has a large existing user community.
Are there better options?

• Start using, reviewing, and improving the code submitted [2].

If you agree with this effort please add your name to a guiding coalition. The
coalition can help to determine where to go from here [49]. This effort could
include any of the following and more:

• Formal technical reviews of code options

• Annual user group meetings

• SPE Technical Sections

• Colloquium meetings

• Joint Industry Program

9 Conclusions

• The industry has been studying and trying to solve drill string vibration
issues for 60 years. One of the key impediments to major improvements is
the difficulty in building on the models of prior research.

• As a group we can challenge the industry to create an open source, sharable,
expandable model of drilling systems.

• It is not enough to react to vibrations and hole quality issues once drilling
has started, but to design, model, and verify that the system will achieve
these objectives before drilling starts.

References

[1] Aarsnes, U., van de Wouw, N., Dynamics of a distributed drill string sys-
tem: Characteristic parameters and stability maps, Journal of Sound and
Vibration, Volume 417, 2018, Pages 376-412.

8



[2] Adewumi, A., Misra, S., Omoregbe, N., A Review of Models for Evaluat-
ing Quality in Open Source Software, IERI Procedia 4 (2013) 88-92, 2013
International Conference on Electronic Engineering and Computer Science

[3] Al-Hiddabi, S.A., Samanta, B., Seibi, A., Non-linear control of torsional and
bending vibrations of oilwell drillstrings, Journal of Sound and Vibration,
Volume 265, Issue 2, 2003, Pages 401-415.

[4] Angona, F.A., Drill String Vibration Attenuation and Its Effect on a Surface
Oscillator Drilling System, Journal of Engineering for Industry Trans. ASME
No. 64-Pet-5, May 1965

[5] Aslaksen, H., Annand, M., Duncan, R., Fjaere, A., Paez, L., & Tran, U. In-
tegrated FEA Modeling Offers System Approach to Drillstring Optimization,
Society of Petroleum Engineers. doi:10.2118/99018-MS (2006, January 1)

[6] Babaei, H., Baker, S., Cornett, A., Validation of an Open-source CFD Tool
to Support Efficient Design of Offshore Gravity-based Structures Exposed to
Extreme Waves, ISOPE-1-17-641, Proceedings of the Twenty-seventh (2017)
International Ocean and Polar Engineering Conference, San Francisco, CA,
June 25-30, 2017, 662-669

[7] Bailey, J. R., Elsborg, C. C., James, R. W., Pastusek, P., Prim, M. T., &
Watson, W. W. Design Evolution of Drilling Tools To Mitigate Vibrations,
Society of Petroleum Engineers, doi:10.2118/163503-PA, 2013, December 1

[8] Bailey, J.J., Finnie, I., An Analytical Study of Drill-String Vibration, Journal
of Engineering for Industry, Tran. ASME, Vol. 82, Series B, No. 2, May 1960

[9] Baird, J. A., Caskey, B. C., Tinianow, M. A., & Stone, C. M. . GEODYN:
A Geological Formation/Drillstring Dynamics Computer Program, Society of
Petroleum Engineers. doi:10.2118/13023-MS (1984, January 1)

[10] Bhardwaj, V.K., Bello, O., Aragall, R., Oppelt, J., Drilling Process Simu-
lation: Status, Outlooks and Comparisons to Other Industries, SPE-181040-
MS, presented at the SPE Intelligent Energy International Conference and
Exhibition, in Aberdeen, UK, 6-8 September 2016

[11] Birades, M. Static and Dynamic Three-Dimensional Bottomhole Assem-
bly Computer Models, Society of Petroleum Engineers. doi:10.2118/15466-PA
(1988, June 1)

[12] Butlin, T., Langley, R.S., An efficient model of drillstring dynamics, Journal
of Sound and Vibration, Volume 356, 2015, Pages 100-123.

9



[13] Cayeux, E. . Reconstruction of Pipe Displacement Based on High-Frequency
Triaxial Accelerometer Measurements, Society of Petroleum Engineers.
doi:10.2118/189618-MS (2018, March 6)

[14] Chen, D. C.-K. Developing and Field Implementation of a State-of-the-
Art BHA Program, Society of Petroleum Engineers. doi:10.2118/107238-MS
(2007, January 1)

[15] Chubak, G., Morozov, I., Open-source system for geophysical data processing
and visualization, SEG-2007-2060, San Antonio 2007 Meeting, 2060-2063

[16] Daering, D.W., Livesay, B.J., Longitudinal and Angular Drill-String Vi-
brations With Damping, Journal of Engineering for Industry, Trans ASME,
November 1968, 671-679

[17] Dakel, M., Baguet, S., Dufour, R., Nonlinear dynamics of a support-excited
flexible rotor with hydrodynamic journal bearings, Journal of Sound and Vi-
bration, Volume 333, Issue 10, 2014, Pages 2774-2799.

[18] Davis, T.A., Duff, I.S., An unsymmetric-pattern multifrontal method for
sparse LU factorization, SIAM J. Matrix Anal. Appl., vol. 18, pp. 140158,
1997.

[19] De Groot, P., Bril, B., The Open Source model in GeoSciences and OpenTect
in particular, SEG-2005-0802, Houston 2005 Annual Meeting, 802-805

[20] Downton, G. C., Systems Modeling and Design of Automated Directional
Drilling Systems, Society of Petroleum Engineers. doi:10.2118/170644-MS
(2014, October 27)

[21] Dunayevsky, V. A., Abbassian, F., & Judzis, A., Dynamic Stability of Drill-
strings Under Fluctuating Weight on Bit, Society of Petroleum Engineers.
doi:10.2118/14329-PA (1993, June 1)

[22] Dykstra, M.W., Nonlinear Drill String Dynamics, Thesis (Ph.D.) University
of Tulsa1996, 260 pages

[23] Dykstra, M. W., Neubert, M., Hanson, J. M., & Meiners, M. J., Improving
Drilling Performance by Applying Advanced Dynamics Models, Society of
Petroleum Engineers. doi:10.2118/67697-MS (2001, January 1)

[24] Elliott, A. S., & Hutchinson, M., Fully-Coupled Nonlinear 3-D Time-
Domain Simulation of Drilling Dysfunctions Using a Multi-Body Dynam-
ics Approach, Society of Petroleum Engineers. doi:10.2118/173154-MS (2015,
March 17)

10



[25] Ertas, D., Bailey, J. R., Wang, L., & Pastusek, P. E., Drillstring Mechanics
Model for Surveillance, Root Cause Analysis, and Mitigation of Torsional
and Axial Vibrations, Society of Petroleum Engineers. doi:10.2118/163420-
MS (2013, March 5)

[26] Fischer, F. J., Analysis of Drillstrings in Curved Boreholes, Society of
Petroleum Engineers. doi:10.2118/5071-MS (1974, January 1)

[27] Fox, F. K., & Nasir, N., Drill Collar String Design And Its Effect On Drilling
M.E.R, Society of Petroleum Engineers. doi:10.2118/501-MS, (1963, January
1)

[28] GNU General Public License, [Online Wikipedia] GNU General Public Li-
cense is a free software license originally written by Richard Stallman, Avail-
able at: https://en.wikipedia.org/wiki/GNU_General_Public_License

[Accessed 04-09-2018] (2018)

[29] Gupta, S.K., Wahi, P., Global axialtorsional dynamics during rotary drilling,
Journal of Sound and Vibration, Volume 375, 2016, Pages 332-352.

[30] Halsey, G. W., Kyllingstad, A., Aarrestad, T. V., & Lysne, D., Drill-
string Torsional Vibrations: Comparison Between Theory and Experiment
on a Full-Scale Research Drilling Rig, Society of Petroleum Engineers.
doi:10.2118/15564-MS (1986, January 1)

[31] Ho, H.-S., General Formulation of Drillstring Under Large Deformation and
Its Use in BHA Analysis, Society of Petroleum Engineers. doi:10.2118/15562-
MS (1986, January 1)

[32] Hohl, A., Herbig, C., Arevalo, P., Reckmann, H., & Macpherson, J., Mea-
surement of Dynamics Phenomena in Downhole Tools - Requirements, The-
ory and Interpretation, Society of Petroleum Engineers. doi:10.2118/189710-
MS (2018, March 6)

[33] Hovda, S., Semi-analytical model of the axial movements of an oil-well drill-
string in vertical wellbores, Journal of Sound and Vibration, Volume 417,
2018, Pages 227-244.

[34] Jogi, P. N., Burgess, T. M., & Bowling, J. P., Predicting the Build/Drop
Tendency of Rotary Drilling Assemblies, Society of Petroleum Engineers.
doi:10.2118/14768-PA (1988, June 1)

[35] Kalsi, M. S., Wang, J. K., & Chandra, U. (1987, March 1), Transient Dy-
namic Analysis of the Drillstring Under Jarring Operations by the FEM,
Society of Petroleum Engineers. doi:10.2118/13446-PA

11



[36] Kamel, J.M., Yigit, A.S. Modeling and analysis of stick-slip and bit bounce
in oil well drillstrings equipped with drag bits, Journal of Sound and Vibration,
Volume 333, Issue 25, 2014, Pages 6885-6899.

[37] Khulief, Y. A. Al-Naser, H., 2005. Finite element dynamic analysis of drill-
strings, Finite Elem. Anal. Des. 41, 13 (July 2005), 1270-1288.

[38] Kreisle, L. F., & Vance, J. M., Mathematical Analysis of the Effect of a
Shock Sub on the Longitudinal Vibrations of an Oilwell Drill String. Society
of Petroleum Engineers. doi:10.2118/2778-PA (1970, December 1)

[39] Krogstad, S., Lie, K., Moyner, O., Nilsen, H.M., Raynaud, X., Skaflestad,
B., MRST-AD an Open-Source Framework for Rapid Prototyping and Eval-
uation of Reservoir Simulation Problems, SPE 173317-MS, presented at the
SPE Reservoir Simulation Symposium in Houston, TX 23-25 February 2015

[40] Liu, Y., Gao, D., A nonlinear dynamic model for characterizing downhole
motions of drill-string in a deviated well, Journal of Natural Gas Science and
Engineering, Volume 38, 2017, Pages 466-474.

[41] Ma, X., Vakakis, A.F., Bergman, L.A., KarhunenLoeve analysis and order
reduction of the transient dynamics of linear coupled oscillators with strongly
nonlinear end attachments, Journal of Sound and Vibration, Volume 309,
Issues 35, 2008, Pages 569-587.

[42] Menand, S., Sellami, H., Tijani, M., Stab, O., Dupuis, D. C., & Simon, C.,
Advancements in 3D Drillstring mechanics: From the Bit to the Topdrive,
Society of Petroleum Engineers. doi:10.2118/98965-MS (2006, January 1)

[43] Mirhaj, S. A., Kaarstad, E., & Aadnoy, B. S., Torque and Drag Model-
ing; Soft-string versus Stiff-string Models, Society of Petroleum Engineers.
doi:10.2118/178197-MS (2016, January 26)

[44] Nandakumar, K., Wiercigroch, M., Stability analysis of a state dependent
delayed, coupled two DOF model of drill string vibration, Journal of Sound
and Vibration 332 (2013) 2575-2592

[45] Richard, T., Germay, C., Detournay, E., A simplified model to explore the
root cause of stickslip vibrations in drilling systems with drag bits, Journal of
Sound and Vibration, Volume 305, Issue 3, 2007, Pages 432-456.

[46] Shor, R. J., Dykstra, M. W., Hoffmann, O. J., & Coming, M., For
Better or Worse: Applications of the Transfer Matrix Approach for An-
alyzing Axial and Torsional Vibration, Society of Petroleum Engineers.
doi:10.2118/173121-MS (2015, March 17)

12



[47] Skeem, M. R., Friedman, M. B., & Walker, B. H., Drillstring Dynamics
During Jar Operation. Society of Petroleum Engineers, doi:10.2118/7521-PA
(1979, November 1)

[48] SPICE, (2018), [Online Wikipedia], SPICE (Simulation Program with In-
tegrated Circuit Emphasis) is a general-purpose, open source analog elec-
tronic circuit simulator. It is used to predict circuit behavior. Available at:
https://en.wikipedia.org/wiki/SPICE, [Accessed 04-09-2018]

[49] Spinellis, D., Giannikas, V., Organizational adoption of open source soft-
ware, The Journal of Systems and Software 85 (2012) 666-682

[50] Sugiura, J., Samuel, R., Oppelt, J., Ostermeyer, G. P., Hedengren, J., &
Pastusek, P., Drilling Modeling and Simulation: Current State and Future
Goals, Society of Petroleum Engineers. doi:10.2118/173045-MS (2015, March
17)

[51] Taron J., Hickman, S, Ingbritsen, S.E., and Williams, C., Using a fully cou-
pled, open-source THM simulator to examine the role of thermal stresses in
shear stimulation of enhance geothermal systems, ARMA 14-7525, presented
at the 48th US Rock Mechanics / Geomechanics Symposium in Minneapolis,
MN, 1-4 June 2014

[52] Tikhonov, V., Valiullin, K., Nurgaleev, A., Ring, L., Gandikota, R., Ch-
aguine, P., & Cheatham, C., Dynamic Model for Stiff-String Torque and Drag
(see associated supplementary discussion), Society of Petroleum Engineers.
doi:10.2118/163566-PA. (2014, September 1)

[53] Tom, N., Lawson, M., Yu, Y., Recent Additional in the Modeling Capabilities
of an Open-Source Wave Energy Converter Design Tool, ISOPE, Proceed-
ings of the Twenty-fifth (2015) International Ocean and Polar Engineering
Conference, Kona, Big Island, HI June 21-26, 2015

[54] Tucker, R.W., Wang, C., An integrated mode for drill-string dynamics, Jour-
nal of Sounds and Vibration, Volume 224(1), 1999, Pages 123-165.

[55] Vromen, T., Dai, C.-H., van de Wouw, N., Oomen, T., Astrid, P., Nijmeijer,
H., Robust output-feedback control to eliminate stick-slip oscillations in drill-
string systems, IFAC-PapersOnLine, Volume 48, Issue 6, 2015, Pages 266-271.

[56] Vromen, TGM 2015, Control of stick-slip vibrations in drilling systems, Doc-
tor of Philosophy, TUE: Department of Mechanical Engineering, Eindhoven.

13



[57] Wang, L., Huang, M., Liu, M., How the founders social capital affects the
success of open-source projects: A resource-based view of project teams, Elec-
tronic Commerce Research and Applications 28 (2018) 114-126

[58] Wierecigroch, M., Nandakumar, K., Pei, L., Kapitaniak, M. Vaziri, V.,
State dependent delayed drill-string vibration – Theory, experiments and a
new model, Procedia IUTAM 22 (2017) 39-50

[59] Wilson, J. K., & Heisig, G., Investigating the Benefits of Induced Vibrations
in Unconventional Horizontals via Nonlinear Drill String Dynamics Model-
ing, Society of Petroleum Engineers. doi:10.2118/173049-MS (2015, March
17)

[60] Wilson, J. K., & Noynaert, S. F., A New Damping Model for Nonlinear
Drillstring Dynamics: Understanding the Effects of Rotation, Eccentricity,
and Confined Fluid Flow and Their Impact on Unconventional Drillstring De-
sign, Society of Petroleum Engineers. doi:10.2118/178817-MS (2016, March
1)

14



Drill-string dynamics in deviated wells in the presence of
heave

Eric Cayeux

IRIS, Stavanger, Norway

1 Introduction

Drilling operations executed from floaters are subject to some vertical movements
of the top of the drill-string, because of heave effects. Heave compensators may
attenuate these oscillations, but especially when passive heave compensation is
used, the residual displacement of the top of the drill-string may still be sufficient
to cause large variations of hook-loads when the bit is on bottom. Pastusek et
al. (2016) [11] pointed out that dynamic drill-string estimation under heave
condition is a challenging problem that requires particular attention.

Axial displacements of the drill-string result in annulus pressure fluctuations,
i.e. swab and surge, which in turn influence the hydraulically generated forces
applying to the drill-string. There is therefore a tight connection between the
elastic deformations of the drill-string and pressure waves propagating inside the
wellbore.

To address those problems, a hydro-mechanical transient model has been de-
veloped. This model considers the coupling of the axial and torsional movements
of the drill-string together with the associated hydraulic effects. The boundary
conditions of the hydro-mechanical system are of great importance for the re-
sponse of the system, and detailed models of the hoisting, top-drive and bit/rock
interaction are integral parts of the model.

We will now describe the principles of the model and provide examples while
drilling and when picking up off bottom.

2 Degrees of Freedom and Accounted Forces

A drill-string is an assembly of tubulars screwed together. Contacts between
the drill-string and the borehole are in most cases not continuous as was the
assumption made in pioneering torque and drag models like the one described
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Figure 1: a) A pipe has six degrees of freedom inside a borehole. Those which are
accounted for in the model are marked in blue. b) Illustration of the punctual and
distributed forces and torques applied to a pipe element between two consecutive
contact points i and i+ 1.

by Johancsik et al. (1984) [9], but localized at specific contact points, typically
the tool-joints of drill-pipes or stabilizers in the bottom hole assembly (BHA).
However, at this stage of the model development, we do not attempt to estimate
the exact location of the contact points between the drill-string and the borehole,
instead we assume that the contact points are located at any positions along the
drill-string where the diameter is larger than the one of the pipe body, i.e. the
tool-joints, the stabilizers and the bit.

The displacement of a pipe is subject to six degrees of freedom (DOF): one
axial displacement, one angular rotation, a two-dimensional lateral translation
and an angular tilting characterized by two angles (see fig. 1a). However, to
simplify the mathematical modelling, we only consider the axial and torsional
movements, i.e. two degrees of freedom.

If we denote a pipe element as the section of drill-string between two contact
points corresponding to indices i and i+ 1 with a change of angle from θi to θi+1

according to a wellbore curvature DLSi, a pipe element is subject to punctual
forces and torques at the contact points and distributed forces and moments
along the element (see fig. 1b). Distributed forces are denoted ~wi,j where j is an
index representing the origin of the distributed force. There are both external
and internal forces and torques. The external forces and torques considered
by the model are: gravitational forces, pressure related forces, forces generated
by the acceleration of fluid displaced in bends, forces and torques produced
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Figure 2: The vertical and axial pressure gradients generate distributed lateral
forces on the drill-string and localized axial forces at any position where there is
a change of diameter.

by viscous friction, mechanical friction between the element and the borehole,
reaction forces between the element and the borehole ~Ri. The internal forces
and torques acting on an element are: the tensions at both ends of the element
~Ti and torques applied at the ends of the element ~Ci.

3 Coupling With Transient Hydraulic Model

It may look surprising that buoyancy forces are not listed here. The reason is
simply that buoyancy forces are a special type of pressure-induced forces where
the gravitational field generates a vertical pressure gradient in a liquid which in
turn results in local net forces along the length of drill-string elements. Pres-
sure drops due to the relative movement of the drill-string and the drilling fluid
also engender pressure gradients, this time oriented along the string, that cause
additional net forces on the drill-string. The combined effect of these pressure
gradients along the drill-string results in distributed perpendicular forces and
also localized axial forces at any locations where there is a change of pipe diam-
eter, e.g. when there is a change of pipe size and also at every tool-joint (see
fig.2).

To correctly estimate the pressure-induced forces, it is therefore necessary
to account simultaneously for the different sources of pressure gradients that
apply along an element. A description of the calculation method for these forces
can be found in [5] and [3]. But because of the dynamic nature of the drill-
string movement, it is necessary to use a hydraulic model that is capable of
modelling not only the effect of flow accelerations on pressure, but also swab
and surge induced-pressure waves. Since pressure losses along the drill-string
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directly influence local net forces on the pipe element, the drilling hydraulic
calculations shall also account for the effect of local rotational speed along the
drill-string as it increases pressure losses when the fluid moves axially.

We can note that pressure waves in drilling fluid propagate much slower
than strain waves in metal like steel. It is therefore not necessary to solve the
hydraulic partial differential equations, i.e. mass conservation and Navier-Stokes,
together with the force and moment balance equations [1]. Futhermore, the
hydraulic partial differential equations, mass and momentum balance, can be
expressed as a mass transfer problem instead of a pressure wave propagation
problem, therefore allowing for utilizing relatively long time steps [4]. Typically,
the transient hydraulic model can be run with time steps that are five to ten times
longer than those of the transient torque and drag model. Yet, as the mechanical
model is stepped more often than the hydraulic one, it is necessary to perform
some extrapolations of the pressure variations during the intermediate steps and
to apply necessary corrections when the results of a new hydraulic time step are
available. Such a method is described in [3].

4 Mechanical Friction

Kinetic friction always acts in the opposite direction to the relative velocity of
the sliding surfaces. In our case, the sliding surfaces are typically the tool-joints.
If there is both a rotational velocity and an axial movement, the kinetic friction
generates both a drag force, i.e. a force oriented in the axial direction, and a
torque because of the tangential force between the surfaces (see fig. 3a). In
the general case, torsional and axial waves propagate along the drill-string, not
necessarily at the same velocity, and therefore the local kinetic friction at any
contact point varies with time.

If the sliding velocity at the contact point becomes zero, then static friction
applies. The static friction force balances exactly all the other forces such that
the surfaces stay without sliding as long as the static friction force does not
exceed the static friction force magnitude limit:

∥∥∥~Fs
∥∥∥ ≤ µs

∥∥∥~Fn
∥∥∥ (1)

where ~Fs is the static friction force, µs is the static friction factor, ~Fn is the
normal force.

The management of static friction requires a special treatment for any contact
point that has entered such a condition, as it should be evaluated when static
friction shall not be applied anymore. To respect the time continuity condition,
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Figure 3: a) Schematic representation of contact between a tool-joint and the
borehole. b) Illustration of the three performance phases achieved by a PDC bit
as a function of the axial load (courtesy of Detournay et al. 2008 [7]).

it is not possible to utilize a simple Coulomb friction formulation, instead it is
necessary to apply a Stribeck friction of the form:

~Fk = (µk + (µs − µk)e−
‖~v‖
vs )

∥∥∥~Fn
∥∥∥ ~v

‖~v‖ (2)

where vs is the critical Stribeck velocity and µk is the kinetic friction factor with
µk ≤ µs

When kinetic friction applies, the unknowns of the problem are the axial
displacement xi,j and the rotation angle θi,j where i is the index of the element
and j is the time step index. In static conditions, i.e. ~vi,j = 0, we shall determine

the static friction force ~Fsi,j that is characterized by an axial and tangential
component, the latter causing a torque at the contact point. In practice, the
balance of forces and moments on an element i depends on forces and moments
from elements i−1 and i+1, essentially because of the elastic deformations in the
axial and torsional directions. There are therefore eight different possibilities: the
element and its closest neighbours are all in kinetic displacement, the element and
its closest neighbours are all static, the element is in kinetic movement and one of
the neighbours is in static condition, the element is in kinetic movement and both
neighbours are in static condition, the element is static and one of the neighbours
is in kinetic movement, the element is static and the two neighbours are in
kinetic displacement. Note that Aarsnes and Shor (2018) [2] have compared
model predictions and observations in cases where transitions between static and
kinetic friction apply, in a one-DOF context, namely when considering torsional
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movement.

5 Bottom-side Boundary Conditions

When the bit is off bottom, it is subject to the same forces and torques that have
been mentioned earlier. The unknowns are therefore the bit axial and angular
positions that are imposed by the element immediately above the bit and the
local forces and torques applied to the bit. However, when the bit is in contact
with the formation, its axial position is constrained by the current bottom hole
depth. The bit rotational speed and the depth of cut (DOC) per revolution
define how fast the formation gets drilled. Detournay et al. (2008) [7] describe
a PDC bit steady state rate of penetration (ROP) model that reproduces nicely
results that are observed during drill-off tests [8]. In a much simplified view of the
model, one can consider that the behaviour of the PDC bit can be decomposed
in three phases. In phase I, the DOC is linearly proportional to the weight on
bit (WOB) and passes through zero at zero WOB. During phase II, the DOC
is also linear but with a steeper slope than in phase I while in phase III, the
slope of the DOC as a function of the WOB is smaller than in phase II and even
possibly negative (see fig. 3b). It is therefore possible to express the ROP as:

vbit = ωbit(dx +Ax
Fbit
dbitg

) (3)

where vbit is the ROP, ωbit is the bit angular velocity, Fbit is the force on bit, dbit
is the bit diameter, g is the gravitational acceleration, dx and Ax are respectively
the DOC at zero WOB and the slope of DOC relative to WOB normalized rela-
tively to the bit diameter, x being the phase representing the working condition,
i.e. either I, II or III.

The torque on bit (τbit) can be estimated from the WOB using the relation-
ship from Pessier and Fear (1992) [12]:

τbit = µkbitdbitFbit (4)

where µkbit is equivalent to a kinetic friction factor. Therefore when it is on-
bottom, the unknown variables at the bit are the weight on bit and the bit
angular position.

6 Top-drive Boundary Conditions

The rotational speed of the drill-string is controlled by the top-drive. The effec-
tive response of the top-drive depends on the motor capabilities and how it is
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Figure 4: Rotor torque as a function of slip for various rotational speeds. Value
derived for a typical AC motor used in modern top-drives.

controlled. In the simplest configuration and for a top-drive driven by AC (al-
ternating current) motors, the control of the top-drive is performed by the PID
(proportional-integral-derivative) controller included in the variable frequence
drive (VFD) associated to the top-drive motor. However, more sophisticated
control methods can be applied to mitigate stick-slip. An overview of such con-
trol methods can be found in Kyllingstad (2017) [10]. The capabilities of AC
asynchronous motors are related to the slip of the rotor speed compared to the
rotating magnetic field generated by the stator: s = 1− α̇r

α̇s
where α̇r and α̇s are

respectively the angular velocities of the rotor and the magnetic field generated
by the stator.

The maximum torque is inversely proportional to the rotational speed (see
fig. 4). However, at low rotational velocity, the electrical current in the windings
would be very high and therefore much heat would be generated due to the non-
negligible electrical resistance of the conductive materials. For that reason, the
VFD limits the amount of electrical current that flows through the motor for
rotational speeds lower than a given threshold (on fig. 4b this limit is 1000rpm)
and therefore the maximum torque at low rotational speed is practically constant.

7 Hoisting System Boundary Conditions

The axial displacement of the top-drive, and consequently of the top of string, is
performed by the hoisting system. There are essentially three types of hoisting
principles: draw-works, ram-rig or rack and pinion. We will here focus on the
most common one, i.e. the draw-works, that is based on a block and tackle
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Figure 5: Schematic representation of a draw-works system with crown-mounted
heave compensation.

system driven by electrical motors. On a floater, there is in addition a heave
compensation system that can either be based on displacing the crown-block
by means of hydraulic cylinders or utilizing actively the draw-works to control
the position of the travelling equipment. The heave compensation can either be
passive in which case an elasto-viscous damping system minimizes the vertical
movement of the top of string with regards to a vertical datum (see fig. 5) or ac-
tive when a controller actively maintains the position of the travelling equipment
relative to a fixed elevation.

As for the top-drive, the response of the draw-works motors depends on
the speed and load, and therefore a similar modelling approach is necessary to
account for the torque response of the draw-work motors, yet one shall consider
that the motor torque is also influenced by the number of layers of drill-line
spooled on the draw-works drum. Also, the drill-line itself has some elasticity
and there is mechanical friction at the level of the sheave bearings [6]. A direct
consequence is that the apparent elasticity of the hoisting system depends on
the position of the travelling equipment in the derrick.

8 Example from a Deviated Well with Passive Heave
Compensation

As an example, we will take try to reproduce two sequences recorded from a
drilling operation in the North Sea from a semi-submersible equipped with crown-
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Figure 6: Estimation of the WOB, bit rotational velocity and bit torque while
drilling from a floater with passive heave compensation.

mounted heave compensation system. The well is horizontal and the bit depth
is 3800mMD.

Fig. 6 shows a first sequence corresponding to drilling the last meters of
a stand. When utilizing calibrated parameters for the bit-rock interaction, i.e.
Ax and µkbit , we obtain very comparable values for the calculated hook-load
and top-drive torque to those measured. As it can be seen on the figure, there
are large WOB oscillations induced by the residual top of string movement when
utilizing passive heave compensation. These oscillations cause in turn substantial
variations of the bit rotational velocity.

In the second sequence shown on Fig. 7, we estimate the evolution of the
top of string force and top-drive torque while picking off bottom. The model
predicts that the bit gets off bottom at time 84s and then returns on bottom for
six seconds at time 89s. During that period, the top-drive torque is impacted by
both the friction along the drill-string and the bit torque. Past time 100s, the
top-drive speed is reduced to zero, yet there is a torque on the top-drive. The
transient torque and drag model and the observations agree that the remaining
top-drive torque decreases slowly as the drill-string is lifted. The predicted and
observed top of string force oscillation during the pick-up are similar in period
and amplitude, yet with a small phase shift.
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Figure 7: Comparison of the observed and predicted values for top of string force
and top-drive torque while picking off bottom from a rig subject to heave.

9 Conclusion

Mechanical friction and pressure-generated forces influence the axial and tor-
sional displacement of the drill-string. These forces are distributed along the
drill-string and vary as a function of time. There is a coupling between hydraulic
pressure waves and mechanical strain waves which necessitates the treatment of
mechanical and hydraulic modelling simultaneously. However, the time step used
for hydraulic modelling can be longer than the one utilized for mechanical esti-
mations. Furthermore, there is a tight interaction between the response of the
drilling machines such as the top-drive and the hoisting system, the drill-string
displacements and forces. With a finite difference scheme to model the dynamic
behavior of the drill-string, it is necessary to apply some special treatment for
the discretized length of the pipes facing the bushing in order to model a smooth
transition when getting in-slips and off-slips. The boundary conditions at the
bit are important to estimate the bottom hole position and the ROP, especially
in cases with substantial residual heave movement at the top of the string.
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The importance of Physics in Drill String modelling
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Abstract

A drillstring is situated in a very complex environment subjected to large differ-
ences in pressures, forces and temperatures. The quality of a simulator depends
on the correctness of the physical models chosen. This presentation will present
some of the critical elements which are needed both for static calculations and
for dynamic scenaria such as vibration analysis.

The drillstring is submerged into a fluid, leading to a buoyant force. We
will show how this can be implemented for various cases, such as varying fluid
densities and shut-in wellhead pressure. In particular we will show the projected
height principle where the static axial pipe load can be simply determined for
any wellbore inclination.

Wellbore friction is another critical issue. We will split the entire wellbore
into two types of segments, straight and curved, the latter giving capstan effect.
We will show how combined axial/rotational motion affect the frictional picture
and we will show how drilling motors lead to reduced bit torque. Advanced
trajectory models such a catenary profiles will be shown. A newly developed
DLS filter will be presented for wellbore tortuosity. Using drillstring compliance
functions we show the application of establishing a bottom reference instead of
the drillfloor.

For drillstring dynamics we will show the geometric coupling between tor-
sional, axial and transversal type vibrations. We will show the effect of axial load
on transversal vibrations and also show the difficulty of modelling drillstring vi-
brations because of ill-defined string support.
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1 Introduction

The models that we discuss in this paper can address various problems in drilling
operations. For instance the effect of ocean waves on floating structures causes
significant heave motions on the rig. During drilling operations, the drillstring is
therefore excited with axial vibrations that can have different frequency content,
dependent on the sea state and the transfer function of the floating structure [2].
When motions have large amplitude and high frequency, large pressure variations
will happen downhole, see [8], [9] and [1]. Moreover, the drill bit is designed to
work under constant axial load and in the case of heave vibrations, inefficient
drilling and damaging vibrations can occur. In this paper we will describe the
results of [7], where axial vibrations in a vertical well is given. Moreover, we will
discuss the result of [6], where a deviated wellbore while reaming is assumed.

Another important issue while drilling deviated wellbores is the efficiency
of hole cleaning. In an operation the crew can ream and wash the wellbore to
remove cuttings at the cost of keeping the wellbore in gauge. If the hole diameter
is enlarged, the level of hole cleaning issues will increase over time. In this paper
we will also present some conclusions regarding a model for torsional vibrations
that is described in [5].

The outline of the mathematical models are given in section 2. Focus on mod-
els that discuss heave motions are discussed in section 3, while models discussing
detection of torque and drag are given in section 4. The paper is concluded in
section 5.

2 Outline of mathematical framework in models

In this section, we outline the models only roughly and readers that are excited
about a rigorous description are advised to address the respective papers. As
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Figure 1: Schematic view of the model of the drillstring. The drillstring is
considered as a set of n blocks with masses and moment of inertias denoted by
mi and Ii, respectively. These masses are connected to n springs. The spring
constants related to the axial tension and compression forces are denoted by ki,
while the spring constants that are related to the torques are denoted by κi.

said before the drillstring is modeled as a set of n blocks that are connected by
n spring elements, see Fig. 1. The first block is hanging from the first spring
which is attached to a point that is called the ”block position”. The position
and rotation of the block position are denoted by Q(t) and Θ(t). In a three
dimensional coordinate system the position of the unstressed blocks are denoted
Xs,i. Based on this, generalized coordinated for position and rotation of blocks
from their initial unstressed positions are denoted by qi(t) and θi(t).

Newtons second law on all blocks gives this set of equations

0 = m1q̈1 −m1gBF1g1,1 + k1(q1 −Q) − k2(q2 − q1) −R1

0 = miq̈i −migBFig1,i + ki(qi − qi−1) − ki+1(qi+1 − qi) −Ri 2 ≤ i ≤ n− 1

0 = mnq̈n −mngBFng1,n + kn(qn − qn−1) −Rn

0 = I1θ̈1 + κ1(θ1 − Θ) − κ2(θ2 − θ1) − S1

0 = Iiθ̈i + κi(θi − θi−1) − κi+1(θi+1 − θi) − Si 2 ≤ i ≤ n− 1

0 = Inθ̈n + κn(θn − θn−1) − Sn,

(1)

where g is gravity constant, BFi is buoyancy factors and the gj,i are some con-
stants related to the geometry of the wellbore. Moreover, external axial forces
are given by the Ris and the external torque are given by Sis.
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In various operations (such as tripping or reaming in vertical or deviated
wellbores), physical assumptions can be made and this defines the Ris and Sis
for each operation. In the case of drilling the torsional and axial vibrations are
coupled, while when the bit is off bottom the torsional and axial vibrations can
be assumed to be uncoupled.

The next step is to write the equations on some matrix form, decouple the
equations by eigenvalue decomposition and finally solve the one dimensional
second order differential equations separately. In the next section we describe
how this is done for axial vibrations in a vertical wellbore.

3 Models to describe heave motions

In [7], a lumped element model for axial vibrations in a vertical well is described.
This paper builds on [4]. In this situation, the external forces come from the
interaction with the drilling fluid. It is assumed that the drilling fluid is New-
tonian and incompressible. When the drillstring is moving up and down, all the
drilling fluid in the annulus is accelerated and decelerated. This results in three
forces acting on the drillstring: the steady-state viscous forces, the additional
viscous forces related to the time effect of building up the velocity profile in the
wellbore(the Basset forces) and the added mass effect. Note that the added mass
effect is independent of the viscosity.

In [7] this set of equations on matrix form becomes

−B(t−
1
2 ∗t q̈) + Mq̈ + Cq̇ + Kq − g − v = f(t), (2)

where B is a diagonal matrix related to the Basset forces, M is a diagonal matrix
with mi on the diagonal, where the last diagonal element has an addition of the
added mass effect. Moreover. C is a diagonal matrix related to steady state
viscous forces and K is a tridiagonal matrix of the form




k1 + k2 −k2 0 . . . 0 0 0
−k2 k2 + k3 −k3 . . . 0 0 0

0 −k3 k3 + k4 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . kn−2 + kn−1 −kn−1 0
0 0 0 . . . −kn−1 kn−1 + kn −kn
0 0 0 . . . 0 −kn kn




. (3)
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Table 1: Characteristic information about the well

Section number 1 2 3 4 5 6

Hole size [in] 36 26 17 1/2 12 1/4 8 1/2 6

End depth [m] 200 650 1350 2275 3700 4370

Drill pipe OD [in] 5 5 5 5 5 5

Drill pipe area [m2] 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034

Drill collar length [m] 24 45 53 100 170 175

Drill collar OD [in] 11 1/4 11 1/4 11 1/4 10 6 1/2 3 3/4

Drill collar area [m2] 0.0406 0.0406 0.0406 0.0375 0.0344 0.0188

Viscosity [Pa s−1] 0.0011 0.0011 0.03 0.03 0.03 0.03

Mud density [kg/m3] 1025 1025 1400 1600 1800 1100

The inverse of this matrix is also used and it is found analytically in [3]. The

expression t−
1
2 ∗t q̈ is a vector of time convolution of t−

1
2 with q̈i. The elements

of v and g are constants related to the stretching of the pipe due to flow speed
(assumed constant) and gravitational forces. The first element of f(t) is equal
to k1Q(t), while the others are zero.

This set of equations are coupled trough K, but it can be decoupled by
a series of coordinate transformations, involving the eigenvalue decomposition.
Moreover the decoupled equations can be solved semi-analytically even though
they are not linear. We have also changed the time scale to τ = (cs/L)t, where
cs is the speed of sound in the drillpipe (typically steel). Finally, we obtain

qj(τ) = Q(τ) ∗τ s1,j(τ) + s2,j(τ), (4)

where s1,j and s2,j are analytic functions that can be pre-computed before the
convolution in Eq. (4). The function s2,j is related to the initial conditions and
is equal to zero if the movement start from rest.

3.1 Some properties of the model

In order to get some intuition about Eq. (4), we found it instructive to focus
our discussion around a vertical well with parameters given in table 1.

In Fig. 2, we have shown the amplification as a function of frequency of
harmonic oscillation at the top for the four last sections. Clearly, the resonant
frequency is lowered as a function of depth. Moreover, we also see the effect
of neglecting Basset forces and the added mass effect. It is clear that these
effects are very important, in terms of lowering the resonant frequency and also
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Figure 2: The amplification as a function of frequency in hertz on a log scale
for the four last sections in the imaginary well. We see that the effect of added
mass is lowering the resonant frequencies. It is important result that the Basset
forces lowers the resonant frequencies and dampens the resonance on a factor of
ten.

lowering the amplification. Heave motions are typically found at frequencies that
are lower than the first eigenfrequency, meaning that the effect of the added mass
can not be omitted. In the same paper, formulas for the pressure variations as
a function of heave motions were also developed and it was clear that in the
deepest section, where the surge and swab pressures are largest, the effect of
added mass is almost dominating. This is an interesting result, since the added
mass effect is independent of viscosity. This means that a simple model such as a
model involving a Newtonian fluid can be sufficient to model downhole pressure
in some cases.
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Figure 3: The amplification as a function of frequency on a log scale for section
three (Fig. 3(a)) to section six (Fig. 3(d)). This shows that the Coloumb friction
is an important damping factor in deviated holes, even when the rotation speed
is high.

3.2 Deviated wellbores

In [6], the model in [7] was extended to axial vibrations while reaming in any three
dimensional well geometry. Since constant rotation is assumed, the Coulomb
friction is kinetic. It is shown that the Coulomb friction forces are approximately
proportional with the q̇is. The proportionality factor is inversely proportional
to the rotation speed. We used a J-well with the same parameters as in table
1. In Fig. 3, we have plotted the effect of rotation speed on the amplification in
the four last sections. It is interesting to see that a rotation speed of 240 RPM,
the system is underdamped. This means that it is actually possible to build up
energy in the drillstring in deviated wellbores.
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4 Models to describe torque

In [5] we have developed the equations for torsional vibrations in deviated well-
bores. We get the matrix form

−B(t−
1
2 ∗t θ̈) + IMθ̈ + Cθ̇ + Kθ + Sco,ss = f(t), (5)

where B is a diagonal matrix with Basset forces due to acceleration or deceler-
ation of rotation speed, IM is a diagonal matrix with moments of inertia, C is
a diagonal matrix with steady state viscous friction coefficients on the diagonal
and K is a tridiagonal matrix with spring constants. Finally, Sco,ss is a vector
of Coulomb friction forces that are perpendicular to the rotation. These forces
are independent of the rotation speed. After the mathematical derivations, we
end up with a solution that is analog to equation 4, i.e. a convolution of top side
movement with some analytic functions.

In Fig. 4, we see the effect of starting rotation quickly in the four last sections.
It is clear that the effect of Basset forces can not be neglected.

Moreover in [5], an algorithm for detecting the time-dependent Coulomb fric-
tion coefficient is outlined and discussed in terms of sensitivity. Mathematically,
the algorithm seems robust and this motivates experimental studies in the future.

5 Conclusion

Various situations where the axial and torsional movement of the drillstring
can be modeled semi-analytically are explained. For deeper understanding of
the models the readers are advised to consult the original papers, but some
important results are also given in this paper.
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ẏn(t) with Basset forces

86 87 88 89
22

24

26

28

0 50 100 150 200

t [s]

0

5

10

15

20

25

30

35

[r
ad

/s
]

Θ̇(t)
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ẏn(t) with Basset forces

86 87 88 89

20

25

30

0 50 100 150 200

t [s]

0

5

10

15

20

25

30

35

[r
ad

/s
]

Θ̇(t)
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High-frequency torsional oscillations – examples and
theory

Benjamin Jeffryes, Zhengxin Zhang, Yuelin Shen, Wei Chen, Jibin Shi, Wesley
Bonstaff, Kien Tang, David L. Smith and Yezid Arevalo

Schlumberger

It has long been known that the rotational dynamics of the drillstring are
highly resonant, even in horizontal holes where much of the length of the drill-
string is lying on the side of the borehole. This is because the torque required to
rotate the drillstring against friction, and to cut the rock at the bit, only depends
weakly on the rotation speed, so there is little vibrational damping present. It is
well known that this can lead to stick-slip behaviour at low frequencies, normally
at the fundamental resonance of the system. This can still create considerable
problems in many drilling operations.

Small downhole sensors and large capacity memories have significantly in-
creased our ability to observe what is happening near the bit, and these mea-
surements are showing up some unexpected phenomena.

Even when the drillstring is not in stick-slip, the resonant nature of the
system is easily seen in the dynamic measurements. Figure 1 shows the rotation
speed, measured using a gyro close to the bit, while drilling a horizontal well
with a rotary assembly (no downhole motor), for a period of 400 seconds with
1ms sampling.

The periodic nature of the variation in rotation speed is obvious, even at this
resolution

Taking the Fourier transform of a longer section of data, including this, with
a similar level of amplitude variation, gives the spectrum shown in figure 2, below
60 Hz and with a close-up below 10Hz.

The largest resonance here is at about 0.5 Hz, though this is not the funda-
mental (0.17 Hz), and many resonances of the full drillstring are visible. The
drillstring is composed of sections with different sizes of pipe, and this results in
increased resonant amplitudes at multiples of around 3.4Hz. Similarly, the local
resonances of the BHA enhance amplitudes with a periodicity of 18Hz

However, looking only at these frequencies does not show the full picture.
The data was acquired with a bandwidth of 512 Hz, though acquisition filters
begin to attenuate the data from 230Hz. Figure 3 shows the full bandwidth
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Figure 1: Sample of downhole rotation speed.

acquired. There is a very strong and narrow group of resonances between 140
and 175Hz, and also some narrow resonances possibly apparent near 300Hz.

If instead of taking the spectrum of the rotation speed (from a gyro) we
use the signal from an accelerometer, oriented in a direction tangential to the
rotational motion, a much richer picture emerges In addition to the group of
resonances between 140 and 170Hz there is a further group between 280 and
350Hz, and others at just below 500Hz.

The cause of these resonances lies not with the structure of the BHA, but the
long length of drillpipe above it. Each drillpipe consists of a narrow pipe section,
terminated by a much thicker joint, containing the connection, so a long length
of drillpipe is a periodic structure of short, high impedance sections (the joints),
connected by long, low impedance sections. It is well known that such a structure
cannot transmit rotational vibrations in certain frequency bands (known as stop
bands), which centre around the frequencies at which 2 periods of the structure
correspond to an integer number of wavelengths of oscillation. Although energy
is not transmitted, it is not absorbed either, so in the stop bands all the energy
is effectively confined near the bottom of, and below, the pipe.

Figure 5 shows a simple theoretical calculation of the absolute value of the
reflection coefficient for a semi-infinite section tool joints, 10 m apart, on 4.5 inch
continuous pipe. Total reflection, and low attenuation, can obviously combine to
create high-Q resonances. If the sole consequence of this were changes in rotation
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Figure 2: Fourier transform of downhole rotation speed.
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Figure 3: Full Fourier transform of downhole rotation speed.

Figure 4: Full Fourier transform of rotational acceleration.
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Figure 5: Theoretical reflection coefficient of periodic tool joints.

speed similar to those shown in figure 1 it would not be problematic, however
figure 6 shows an hour of data from the same well. In blue is the signal from the
gyro, red is the same signal low-pass filtered to below 6 Hz.

For some periods, the drillstring is in full stick-slip at low frequency, however,
for the rest of the time there are high amplitude vibrations at higher frequencies.

In figure 7, the same low-pass filtered data is shown, together with the am-
plitude at two of the higher resonant frequencies, close to 142 and 177 Hz.

The drillstring vibration flips between low frequency stick slip and high-
amplitude resonance at two high frequencies, 142 Hz and 177Hz. The amplitude
at the other resonance in the first stop-band, 151 Hz, is always very low. Al-
though this is not obviously stick-slip from the raw data in figure 6 (during pe-
riods of high-amplitude at high frequency, the minimum rotation speed is above
zero), the phase difference at these frequencies between the bit and the sensor
position means that when these high-amplitude resonances are at their highest
amplitude, there is stick-slip at the bit. In this entire data set, stick-slip is only
seen at two of the three resonances in the first stop band.

These high amplitude rotation speed variations also lead to high ampli-
tude torque variations, with hundreds of thousands of torque cycles per hour
of drilling. This torque variation would not cause excessive fatigue if the total
cycles seen by the tubulars were in the thousands, but with millions of cycles,

43



Figure 6: One hour of rotation speed data during high-amplitude oscillations.

Figure 7: Rotation speed data in different frequency bands.
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Figure 8: Decomposed rotation speed second BHA.

fatigue failure occurs at stress-concentrating features such as ports.

During this data acquisition campaign we recorded data for two very similar
sections, with near identical drillstrings. The high frequency resonances for the
two BHAs were within a fraction of a Hz for the two drillstrings. However,
for the second drillstring, a different situation was seen with respect to high
frequency stick-slip. The resonances at 142 Hz and 177 Hz were never seen at
high-amplitude. In contrast the high amplitudes are seen at the other resonance
in the first stop band (151 Hz) and at just one of the three resonances in the
second stop band (299 Hz).

Figure 8 shows a section of data from the second section drilled, similarly
decomposed Although the 299Hz is not obviously full amplitude, in addition
to the phase effects, it has been attenuated by a factor of about 2.5 by the
acquisition filters.

In contrast to low frequency stick-slip where one stick-slip cycle corresponds
to multiple rotations of the drill bit, at these high frequencies the drill bit is only
moving forward a few degrees each cycle. For the example above, with the mean
rotation speed at 200rpm and 299Hz stick-slip, there are close to 100 cycles per
rotation of the drill bit.

Motor drilling

Increasingly in modern drilling practice, positive displacement motors are
used not just in conventional steering applications but also to provide additional
rotation speed and power to the drill bit when drilling with rotary steerable
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Figure 9: Rotation speed data from below a motor.

systems. In such applications, there is a length of tubular below the motor that
can range from around 5m up to 50m.

We have known for some time that the impedance contrast between the sub-
motor tubulars and the motor-rotor can lead to resonances trapped below the
motor, but until recently the fact that these can lead to high-frequency stick-
slip and other pathological vibrations had not been recognised. Figure 9 shows
a snap-shot from a particularly extreme example. It shows about 500 seconds
of gyro (rotation speed) data recorded below a motor, running with a rotary
steerable system. This is near the end of the bit run, under very harsh conditions.
Flow, and hence motor rotation, commences at about 4500 seconds, and the bit
goes on bottom just before 4650 seconds. Figure 10 shows a decomposition into
low frequency and high frequency resonant components.

After a short burst of high-frequency at 4700 seconds, the bit goes into full
low-frequency stick-slip, combined with high-frequency resonance. Looking in
more detail, figure 11 shows a close-up when the drill bit is still off bottom.

The drillstring above the motor is in high-amplitude oscillation, probably
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Figure 10: Below-motor rotation speed decomposed by frequency.

full stick-slip, at the resonant frequency of about 0.2Hz, but there is a signifi-
cant component at the next resonance (0.6Hz). The motor though is rotating
smoothly, giving a minimum bit rotation speed of about 80rpm. Figure 12 shows
what happens after the bit goes on bottom. The bit stops rotating, implying
that the motor is going into stall, and the system goes into a stall stick-slip cycle
at close to the 0.6Hz resonance.

During each of the moving stages of the stall stick-slip cycle, the 192Hz res-
onance is also excited but not consistently. However, within less than a minute,
the stall stick-slip cycle switches to 0.2 Hz as shown in figure 13.

Now, during each stick-slip cycle which lasts around 5 seconds, the motor
stalls and then as the bits average speed accelerates, full amplitude 192Hz os-
cillations are excited at the same time, so at the peak of the cycle, the bit is
oscillating between 0 and around 600 rpm.

In conclusion, high frequency rotational oscillations are proving to be a signif-
icant issue in drilling, especially as they cause fatigue failures in downhole tools.
However, with the acquisition of extensive field data, our ability to model them
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Figure 11: Off-bottom rotation speed.

and devise methods for their mitigation increase. We should however probably
still expect surprises
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Figure 12: Stall stick-slip initiation.

Figure 13: Full stall stick-slip cycling, with high-frequency resonance.
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1 Introduction

Systems described by delay-differential equations arise in many science and engi-
neering fields (i.e., networked systems, biological systems). One example in the
engineering field is rotary drilling dynamics [1, 2, 3]. As shown in earlier work,
the state-dependent delay can arise in the description of the cutting action of the
drill bit blade on the rock interface. This delay can play an important role in de-
termining stick-slip behavior of the system. In related previous work conducted
in the authors’ group, reduced-order models, finite-element based discretization,
and the presence of the state-dependent delay have been discussed [3, 4]. In the
current work, the authors carry out a nonlinear analysis and numerical studies
with a reduced-order model to further our understanding of the state-dependent
delay effect.

The remaining part of this paper is organized as follows. In Sections 2 and 3,
the authors follow their earlier work reported in reference [5] and set the stage for
the analyses to follow. A reduced-order model is presented to describe the axial-
torsion dynamics of drilling. For the sake of analyses, a nondimensionalized
form of the governing equations is provided. Later, linear stability analysis
is conducted by using the D-subdivision scheme. In Section 4, the solutions
of the nonlinear system are examined by using a continuation method. The
implicit state-dependent delay is rewritten as an explicit function by using a
Taylor expansion to facilitate the analysis. Hopf bifurcations of fixed points
are determined and it is found that the nature of these bifurcations can be
subcritical or supercritical depending on the parameter values. It is found that
the state-dependent delay can have a destabilizing effect in certain cases. The
axial damping ratio and torsion damping ratio are found to have a significant
influence in determining the effect of the state-dependent delay on the system
dynamics.
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2 Modeling and nondimensionalization

In Figure 1(a), an illustrative model of a drill-string system is provided. The
axial and torsion motions of interest are also shown. At the top end of the drill
sting, a constant axial speed V0 and a rotation speed Ω0 are imposed on the
system. The governing equations of motion take the form

MZ̈(t) + CaŻ(t) +Ka(Z(t)− V0t) = Ws −Wb(t)

IΦ̈(t) + CtΦ̇(t) +Kt(Φ(t)− Ω0t) = −Tb(t)
(1)

Here, M and I are the respective translational and rotational inertias, Ka and
Kt are the respective translational stiffness and torsion stiffness, and Ca and Ct
represent the respective translational damping and torsion damping. Further-
more, Ws is the sum of the weight of both the drill pipe and drill collar. Wb

and Tb respectively denote the weight and torque on the bit, and they are both
determined by bit-rock interactions. Each of them can be decomposed in terms
of cutting and friction components, as follows.

Wb(t) = Wbc(t) +Wbf (t)
Tb(t) = Tbc(t) + Tbf (t)

(2)

The subscripts bc denotes the cutting component of the drill bit and bf denotes
the friction components on the drill bit, respectively. Following the earlier work
of Detournay and Defourny[6], those components can be expressed as

Wbc(t) = εaζR(d(t))H(Φ̇(t)) Tbc(t) =
1

2
εa2R(d(t))H(Φ̇(t)) (3)

Wbf (t) = σalH(d(t))H(Ż(t)) Tbf (t) =
1

2
µγa2σlsgn(Φ̇)H(d(t))H(Ż(t)) (4)

where the R(.) function is the unit ramp function and H(.) is the Heaviside
step function. In Figure 1, two successive blades of a polycrystalline diamond
compact drill bit are shown along with the delayed states. For an individual
blade, the instantaneous depth of cut can be determined as

dn(t) = Z(t)− Z(t− τ) (5)

Assuming that the cutting action is uniform across the N blades, then, the cutting
depth is

d(t) = Ndn(t) (6)

where the delay τ is given by

Φ(t)− Φ(t− τ) =
2π

N
(7)
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Figure 1: (a) Representative reduced-order model of drill-string system. (b) Two
successive blades of a drill bit.

The state-dependent delay τ(Φ(t)) is the elapsed time for the drill bit to rotate
over an angle of 2π

N , and this delay depends only on the state Φ. Next, the
equations of motion are cast into dimensionless form. Following earlier work [2],
the characteristic time t∗ =

√
I/Kt and characteristic length L∗ = 2Kt/εa

2 are
introduced. Then, once can write the nondimensional variables as

z =
Z − Z̄
L∗

ϕ = Φ− Φ̄ t̂ = t/t∗ τ̂ = τ/t∗ (8)

Here, Z̄, and Φ̄ correspond to the equilibrium solution of Eq.(1), which is a
trivial solution in the absence of vibrations. The axial state z and angular state
ϕ are functions of dimensionless time t̂. With the nondimensional variables, the
governing equations can be recast as

z̈(t̂) + 2ξηż + η2x(t̂) = −ψδ(t̂)
ϕ̈(t̂) + 2κϕ̇(t̂) + ϕ(t̂) = −δ(t̂) (9)

The dimensionless parameters are defined as

ξ =
Ca

2
√
KaM

κ =
Ct

2
√
KtI

(10)

ψ =
εaζI

KtM
η2 =

Ka

M
t2∗ =

KaI

KtM
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Table 1: Parameters used for drilling operations (values adopted from references
[1, 4])

Parameter Symbol Value Unit

Mass M 3.4× 104 kg
Axial damping Ca 1.56× 104 N s/m
Axial stiffness Ka 7.0× 105 N/m
Moment of inertia I 116 kg m2

Torsion damping Ct 32.9 N s m/rad
Torsion stiffness Kt 938 N/m
Radius of drill bit a 0.108 m
Wear flat length l 0.0012 m
Intrinsic specific energy of rock ε 0− 110 MPa
Contact strength σ 60 Mpa
Cutter face inclination ζ 0.6 -
Friction coefficient µ 0.6 -
Geometry parameter of drill bit γ 1 -
Number of blades on drill bit N 4 -

The parameters ξ and κ are the damping ratios associated with axial and tor-
sional motions, respectively. η represent the ratio of axial natural frequency to
torsional natural frequency. The quantity ψ is dependent upon the rock strength
and drill-bit geometry.

δ is the dimensionless perturbation of cutting depth δ, and this can be written
as

δ(t̂) = N [z(t̂)− z(t̂− τ̂) + (τ̂ − τ̂0)v0] (11)

where v0 is the dimensionless penetration rate, ω0 is the dimensionless angular
speed, and τ̂0 is the constant steady-state time delay. These quantities take the
forms

ω0 = Ω0/t∗ v0 =
V0/L∗

Ω0
=

εa2

2KtΩ0
V0 τ̂0 =

2π

Nω0
(12)

The dimensionless state-dependent delay is given by

τ̂ = τ̂0 −
1

ω0
(ϕ(t̂)− ϕ(t̂− τ̂)) (13)

After substituting Eq.(11) and Eq.(13) into Eq.(9), the governing equations
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can be rewritten as

z̈(t̂) + 2ξηż(t̂) + η2z(t̂) = −Nψ(z(t̂)− z(t̂− τ̂)) +Nψv0(ϕ(t̂)− ϕ(t̂− τ̂))

ϕ̈(t̂) + 2κϕ̇(t̂) + ϕ(t̂) = −N(z(t̂)− z(t̂− τ̂)) +Nv0(ϕ(t̂)− ϕ(t̂− τ̂)) (14)

3 Linear stability

According to the work of Hartung [7], a true linearization of the system with
state-dependent delay is not possible due to the fact that the solution of the
system is not differentiable with respect to state-dependent delay. Hence, one
needs to find a constant delay model which has the same local stability properties
as the original system. Making use of the method discussed by Insperger and
Stepan [8],and letting τ̂ = τ̂0, the resulting linearized system is

z̈(t̂) + 2ξηż(t̂) + η2z(t̂) = −Nψ(z(t̂)− z(t̂− τ̂0)) +Nψv0(ϕ(t̂)− ϕ(t̂− τ̂0))

ϕ̈(t̂) + 2κϕ̇(t̂) + ϕ(t̂) = −N(z(t̂)− z(t̂− τ̂0)) +Nv0(ϕ(t̂)− ϕ(t̂− τ̂0)) (15)

From these linearized equations, the characteristic equation is determined as

P0(s) + P1(s)(1− e−τ̄ s) = 0 (16)

where P0 and P1 are polynomials in the eigenvalue s. These polynomials can be
determined as

P0(s) = s4 + (2ξη + 2κ)s3 + (η2 + 4κξη + 1)s2 + (2ξη + 2κη2)s+ η2

P1(s) = (Nψ −Nv0)s2 + (2κNψ − 2ξηNv0)s+ (Nψ −Nη2v0) (17)

Following the procedure of the D-subdivision method, the authors substitute
s = iω and τ̄ = 2π/ω0 into Eqs.(17) and separate the real and imaginary parts.
After a rather lengthy calculation, one obtains the stability crossing set in the
ω0-v0 domain as

v0SDD =
1

N [α(ω2 − η2) + 2βξηω]
[
α2 + β2

2
+ (α(1− ω2) + 2βκω)Nψ]

ω0SDD =
2πω

N(Θ1 + (2k − 1)π)
, k = 1, 2, ..., (18)

Here,

α = Real(P0) β = Imag(P0) Θ1 = ∠ −P1

P0 + P1
(19)

Results obtained on the basis of stability boundaries in the ω0 − v0 parameter
space is shown in Figure 2. From the plots, it is evident that the damping ratios
play an important role in determining the stability boundaries. The results
obtained agree well with the numerical findings reported in an earlier work by
the authors’ group [4].
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Figure 2: Stability charts in the plane of the drive speed ω0 and the penetration
speed v0, for different values of ξ and κ.

4 Nonlinear analysis of the system with the state-
dependent delay

In Eq.(14), the state-dependent delay term is the only source for nonlinearity
of our nondimensionalized system and it is in term of implicit function. The
software DDE-BIFTOOL [10] can be used to carry out continuation of solution
branches of systems with delays. Here, this tool is used to study the bifurcations
of solution of the nonlinear systems with constant delay and state-dependent
delay. However, to use this tool, the state-dependent delay must be in an explicit
form. To address this, the state-dependent delay in Eq.(13) is rewritten as a three
level, nested constant delay in the form

τ̂ = τ̂0 −
1

ω0
(ϕ(t̂)− ϕ(t̂− (τ̂0 −

ϕ(t̂)− ϕ(t̂− τ̂0)

ω0
))) (20)

By using a Taylor expansion and only keeping the first two orders, the explicit
form of state dependent delay is determined as

τ̂ = τ̂0 −
1

ω0
(ϕ(t̂)− ϕ(t̂− τ̂0))− 1

ω2
0

(ϕ(t̂)− ϕ(t̂− τ̂0))ϕ̇(t̂− τ̂0) (21)

After combining the nondimensionalized governing system Eqs. (14) together
with the explicit state-dependent delay function Eq.(21) and using the DDE-
BIFTOOL, the authors generate the bifurcation diagram with different dimen-
sionless damping ratios as shown in Figure 3. The continuation of the periodic
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orbits is stopped, when the state-dependent delay τ̂ < 0. Along the y axis, the
maximum value of the dimensionless ϕ of the orbit is shown.

Similarly to the turning case [9], when a subcritical Hof bifurcation of a fixed
point occurs, an unstable limit cycle (periodic orbit) coexists with the stable
equilibrium. When a supercritical Hopf bifurcation of a fixed point occurs, an
stable limit cycle (periodic orbit) coexists with the unstable equilibrium. From
the figures, it can be discerned that when the dimensionless axial and torsional
damping ratios are small, branches of periodic motions bend to the left locally;
this is a characteristic of a subcritical bifurcation. However, as the damping
ratios are increased, the periodic solution branches start to bend to the right;
this menas that the nature of the Hopf bifurcation has changed from subcritical
to supercritical.

5 Concluding remarks

In this work, the effect of the state-dependent delay on drilling dynamics has
been elucidated by considering a representative reduced-order model for coupled
axial and torsion dynamics. The linear stability of the equilibrium solution of
the system was analyzed by using the D-subdivision method, and the nonlinear
stability analysis was conducted with the aid of a continuation scheme. From the
results, it can be inferred that both the axial damping ratio and torsion damping
ratio play a significant role in determining the linear stability of the equilibrium
solution and the nature of the Hopf bifurcation of the equilibrium solution.
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1 Motivation

Recent developments in deep drilling for the oil and gas industry require to take
into account more and more dynamical effects that arise during the process.
One of the problems in deep drilling is the occurance of unexpected self-excited
vibrations that might appear due to several reasons like the stick-slip effect
[1, 2, 3] primariliy related to the torsional oscillations of the drill string, the drill
bit-rock interaction [4], and the high structural flexibility of the drilling system.
This often results in expensive drill bit failures.

In this study, we focus on the dynamic loss of stability through the drill
bit-rock interaction by investigating an equivalent model of milling. The manu-
facturing processes such as drilling and milling are both subjected to the so-called
regenerative effect when either the rotating cutting tool or the workpiece or both
are flexible and the chip thickness varies due to the relative vibrations of the tool
and the workpiece. The general mechanical model where the regenerative effect
first appeared was introduced by Tobias [5] and Tlusty [6]. The tool meets the
surface that was formed in the previous cut, that is, the past state of the tool
excites the system after a certain time.

The dynamics of the deep drilling process is greatly affected by both the drill
dynamics and the high flexibility of the drill string. In the drill dynamics, the
regenerative cutting force is introduced because of the hard earth crust removal
that gives a regenerative delay in the same way as explained above for machining.
However, the drill string is subjected to the combination of longitudinal, torsional
and lateral vibrations that all affects the complex dynamics of the system.

This work investigates only the lateral vibrations and considers the system
as a damped spring/lumped mass oscillator that models the drill bit and one
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segment of the drill string. The goal is to show how the axial (compressive)
component of the cutting force and the presence of torsional torque affect the
linear stability of the process.

The drill bit/drill string system is modelled by a cantilever beam that is
considered to be prismatic, homogeneous, linearly elastic and inextensible. Its
mathematical model is based on the Euler-Bernoulli beam theory and the effect
of compression and torsion appears through the lateral stiffness of the system. To
provide a wider picture about the influence of the applied loads on the stability of
the drilling process, different cases are investigated: constant and varying loads.
The latter case is somewhat in connection with the regenerative effect. Since
compression and torsion decrease the lateral stiffness and modifies the bending
natural frequency of the system, it has a destabilizing effect, that is, it reduces
the stable region of the drilling process. The changes of the standard stability
charts are presented and the reduction of the stable parameter regions is shown.

2 Modelling and Analysis

In order to investigate the lateral vibrations of the drill bit/drill string system,
we need to consider a 2 DoF mechanical model shown in Fig.1(a). The system is
modelled as a cantilever beam and it is assumed to have symmetric parameters
in the directions x and y, and diagonal modal matrices arise in the equation of
motion. The governing equation of the system is given by

Mq̈(t) + Cq̇(t) + Kq(t) = F(t) , (1)

where

q(t) =

(
x(t)
y(t)

)
, F(t) =

(
Fx(t)
Fy(t)

)

are the position and the cutting force vectors, and M ,C and K are the modal
mass, damping and stiffness matrices, respectively. Based on Fig.1(a), the x and
y components of the cutting force acting on the edge j have the form

Fj,x(t) = Fj,r(t) sinϕj(t) + Fj,t(t) cosϕj(t)

Fj,y(t) = Fj,r(t) cosϕj(t)− Fj,t(t) sinϕj(t)
(2)

where ϕj(t) = 2πΩt/60 + 2πj/N is the angular position of the edge j, N is the
number of cutting edges and Ω is the speed of rotation in rpm. The cutting force
components Fj,r and Fj,t are expressed by

Fj,r(t) = Krbh
q
j(t) ,

Fj,t(t) = Ktbh
q
j(t) ,

(3)
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Figure 1: Mechanical model of the drill bit/drill string system. (a) The distri-
bution of the cutting edges with the orientation of the cutting force components
on the edge j. (b) The definition of the chip thickness h and the chip width b.
(c) The introduction of the regenerative effect.

respectively where Kr and Kt are cutting force parameters, b is the chip width,
h is the chip thickness and q is the cutting force exponent [9]. The exponent
q represents a strong nonlinearity and plays significant role in determining the
cutting conditions to reach the stable region of the process.

In the mechanical model (see Fig.1(a)), it is assumed that the tool never
leaves the surface, thus the instantaneous chip thickness h > 0 during the process.
The chip thickness h can be given as the combination of the feed and the present
and delayed position of the drill bit in the form (see Fig.1(b) and (c))

hj(t) = hs +
1

tanκ
[(x(t− τ)− x(t)) sinϕj(t) + (y(t− τ)− y(t)) cosϕj(t))] (4)

where hs is the feed per cutting edges and τ = 60/(NΩ). After the substitution
of Eqs.(3) and (4) into Eq.(2), the linearisation gives

F(t) = Krbh
q
s

(
G1(t)
G2(t)

)
+
qhq−1

s Krb

tanκ

(
Gxx(t) Gxy(t)
Gyx(t) Gyy(t)

)
(q(t− τ)− q(t)) (5)
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where

G1(t) =
N∑

j=1

(
sinϕj(t) +

Kt

Kr
cosϕj(t)

)
(6)

G2(t) =
N∑

j=1

(
cosϕj(t)−

Kt

Kr
sinϕj(t)

)
(7)

Gxx(t) =
N∑

j=1

(
sinϕj(t) +

Kt

Kr
cosϕj(t)

)
sinϕj(t) (8)

Gxy(t) =
N∑

j=1

(
sinϕj(t) +

Kt

Kr
cosϕj(t)

)
cosϕj(t) (9)

Gyx(t) =
N∑

j=1

(
cosϕj(t)−

Kt

Kr
sinϕj(t)

)
sinϕj(t) (10)

and

Gyy(t) =
N∑

j=1

(
cosϕj(t)−

Kt

Kr
sinϕj(t)

)
sinϕj(t) (11)

are τ periodic functions.

2.1 Nature of the applied loads

Based on the resolution of the cutting force Fj shown in Fig.1(a), its compressive
(axial) component Fj,a and the presence of the torsional torque Mt affect the
lateral stiffness of the system and thus modify its natural frequency. Two cases
can be separated: when the applied load is assumed to be constant and when it
varies.

According to the Euler-Bernoulli beam theory, the lateral stiffness of the
system under compression Fa =

∑N
j=1 Fj,a and torsion Mt is expressed by [7, 8]

in the form

k = − νF 2
a

νFaL+ νMt
sin(µL)

cos(νL)
− (2ν2IE − Fa) tan(νL)

, (12)

where

µ =
Mt

2IE
, ν =

1

2

√(
Mt

IE

)2

+
4Fa

IE
.
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Figure 2: The dimensionless lateral stiffness of the system (see Eq. (12)) where
Facr = π2IE/(4L2) and Mtcr = πIE/L (see Ref[8]).

Here, L is the length of the drill bit/drill string model and IE is the bending
stiffness. Equation (12) can be approximated by the multi-variable power series
[7]

k = k0 − k1Fa −O(F 2
a ,M

2
t ) (13)

where k0 = 3IE/L3 and k1 = 6/(5L). It can be seen that the torsional torque
Mt does not appear in the linear approximation of Eq.(12) and thus it has no
effect on the change of the natural frequency of the system. Besides, in case
of compression even the Euler buckling load Fcr = π2IE/(4L2) is satisfactory
approximated by k = 0.

Corresponding to Eq.(3), the compressive (axial) force characteristic can be
given by

Fj,a(t) = Kabh
q
j(t) , (14)

which is calculated as per cutting edges. By substituting Eq.(4) into Eq.(14), we
obtain

Fa(t) = Kabh
q
s +

qhq−1
s Kab

tanκ

(
G3(t)
G4(t)

)
(q(t− τ)− q(t)) (15)

where

G3(t) =
N∑

j=1

sinϕj(t) (16)
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and

G4(t) =

N∑

j=1

cosϕj(t) . (17)

According to Eqs.(13) and (15), we consider the stiffness matrix in Eq.(1) as

K =

(
k0 − k1Fa(t) 0

0 k0 − k1Fa(t)

)
. (18)

2.2 Stability analysis

To perform the stability analysis of the drilling process, we use the small pertur-
bation method where the solution can be decomposed as

q(t) = qP(t) + ε(t) (19)

where qP(t) is a τ periodic stationary solution and

ε(t) =

(
ξ(t)
η(t)

)
(20)

is the perturbation around qP(t). The periodic component qP(t) of the drill bit
motion can be calculated as the steady-state solution of

Mq̈P(t) + Cq̇P(t) +

(
k0 − k1Kabh

q
s 0

0 k0 − k1Kabh
q
s

)
qP(t) = Krbh

q
s

(
G1(t)
G2(t)

)
.

(21)
Since the number of cutting edges N is larger than 1, the rhs of Eq.(21) is
zero (see Eqs.(6) and (7)) and thus qP takes constant zero value as a stationary
solution. Substitution of Eq.(19) into Eqs.(1), (5) and (15) and neglecting the
higher order terms in ε, we get the variational system

Mε̈(t) + Cε̇(t) +

(
k0 − k1Kabh

q
s 0

0 k0 − k1Kabh
q
s

)
ε(t)

=
qhq−1

s Krb

tanκ

(
Gxx(t) Gxy(t)
Gyx(t) Gyy(t)

)
(ε(t− τ)− ε(t))

(22)

that is used to determine the stability of the drilling process.
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3 Results

Since the system matrices are assumed to have symmetric parameters in both
directions x and y and they are diagonal, the natural angular frequency ωn of the
system can be calculated directly in accordance with Eq.(13). When the value of
the compressive force Fa is zero or constant then the natural angular frequency
ωn is also a constant number. In the stability charts, the dimensionless chip
width b̄ = qhq−1

s Krb/(mf
2
n0 tanκ) is used where m is the modal mass and fn0 =√

k0/m/(2π) is the basic natural frequency. There is a connection between the
cutting force parameters Kt, Kr and Ka, that is, Kr = σKt and Ka = σKt tanβ
where σ is an empirical number and β is assumed to be equal to κ (see Fig.1(b)).

The dimensionless stability lobes shown in Fig.2 can be constructed by using
the so-called semi-discretization method [10]. b̄ is proportional to the chip width
b, thus only the practically relevant domain b̄ > 0 is depicted. It can be seen
that the constant compressive force provides a shifted stability map. The map
moves left and down because the lateral stiffness of the system decreases, which
affects the natural angular frequency, too.

In contrast, in case of varying compression, the natural frequency fn also
depends on the chip width b, which leads us to the dimensionless stability di-
agram, which is depicted in Fig.3(c). Since the natural frequency decreases as
b̄ increases, the lobe structure is shifted a little down and deflected both to the
left and also somewhat to the right compared to the non-compressed case. This
means, for example, that the available maximum values of the chip width b are
reduced in the stable pockets of the charts.

Vibrations arise when the system loses its stability and these vibration fre-
quencies arising at the stability boundary of the drilling process is also shown in
Fig.3(a) and (b). The continuous lines represents the so-called secondary Hopf
(Neimark-Sacker) bifurcation and the dotted lines show the period doubling bi-
furcation. It can be seen that the period doubling bifurcation vanishes where
the frequency lines of the Hopf bifurcation intersect each other.

4 Conclusion

This paper brings up the topic of the stability of the deep drilling process by
investigating an equivalent model of the milling operation. The system is de-
scribed by a 2 DoF dynamical model. The cutting force Fj can be resolved to a
radial force Fj,r, a tangential force Fj,t and an axial force Fj,a that acts on the
drill bit as compression. Besides, torsional torque Mt also appears. This study
investigates two cases: when the applied load is considered to be either constant
or varying.
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b

General Case
Case of constant compression

Figure 3: Comparison of the dimensionless stable regions of the drilling process
where the general case means the system under no compression. The numerical
values σ = 0.3, L =2.5 m, κ = 80 deg, q = 0.55, ζ = 0.2 and Fa = 350 kN are
used.

Based on the Euler-Bernoulli beam theory, the lateral stiffness of the drill
bit/drill string system can be calculated, which depends on compression Fa and
torsion Mt, respectively. It also describes the variation of the natural frequency
of the drill bit/drill string system. However, it can be shown that the torsional
torque Mt has no effect in the linear approximation of the stiffness.

By using constant compression, the so-called lobe structure is slightly shifted
to the left and down compared to the general case with no compression. In
contrast, under varying compression, the stability map is shifted down and bent
both to the left and slightly to the right compared to the general non-compressed
case. The vibration frequencies arising at the stability boundary reveal how the
period doubling bifurcation vanishes as the frequency lines of the secondary Hopf
bifurcation intersect.

These phenomena may play a relevant role when the complex drill bit dy-
namics is considered including all the axial, torsional and lateral vibrations.
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1 Introduction
Drill-string plays an important role in rotary deep drilling systems. Drill-string,
consisting of a series of drill-pipes, is used to transmit rotary power from the top
to bottom hole assembly which further carries drill-collar and drill-bit. Hence,
any failure in drill-string causes the shut down of the entire drilling operation
and loss to drilling industry. Self-excited vibrations in axial, torsional and lateral
directions, which manifest as bit-bounce, stick-slip and whirling motion, respec-
tively are one of the major cause of drill-string failure. Therefore, it is necessary
to understand their origin and explore methods to suppress these vibrations.

One of the major cause of these self-excited vibrations is attributed to the
regenerative effect which is associated with a varying depth of cut per revolution
due to axial vibrations. The depth of cut with the regenerative effect can be
modeled using a delayed value of the axial displacement. However, the time-
delay which is the time taken by one cutter to occupy the position of the previous
cutter depends on the current and delayed value of the drill twist making it an
implicit state-dependent delayed equation [1–4]. However, all of them employ
drill-bits where the cutters are uniformly distributed. In this work, we explore
the effect of a non-uniform distribution of the cutters along the drill-bit on the
stability of steady drilling and hence, avoiding self-excited vibrations. We have
found the state-dependent delay model to be rather cumbersome for this purpose.
Instead we have modified the recently proposed alternate approach to model the
axial-torsional dynamics of rotary drilling [5, 6] to accommodate the uneven
distribution of the cutters.

There are several different approaches which have been employed in the liter-
ature to control/suppress self-excited vibrations in rotary drilling. They can be
broadly classfied into three categories: proper design of drilling apparatus along
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Figure 1: Schematics of (a) axial and (b) torsional dynamics of drill-string.

with proper choice of operating parameters [6–9]; by passive control through the
use of additional devices like shock absorbers or shock subs which are essentially
tuned vibration absorbers [10, 11]; and the use of active controllers wherein
an actuator applies a force at the drill-bit depending on the measured vibration
levels [12–15]. Our approach of distributing the cutters non-uniformly on the
drill-bit fits into the first category and is motivated by its successful application
in improving stability in multi-cutter machining processes, viz. in milling or
drilling in metals [16–18]. In order to study the effect of non-uniform distribu-
tion of cutters on the drill-bit on the stability of the steady drilling state, we
compute the stability of the system numerically using a modified version of the
discretized equations developed in [5] instead of an exact analytical stability anal-
ysis as performed in [6, 19] for simplicity. We observe that this method is fairly
effective in mitigating drill-string vibrations. We start with a brief description
of a mathematical model for rotary drilling with such a drill-bit.

2 Mathematical model
In this section we briefly outline the simplified lumped parameter axial-torsional
model of rotary drilling [1] which is being used in the current work. In the
axial direction, the drill-string is modeled as a spring-mass-damper system with
spring stiffness (Ka), viscous damping coefficient (Ca) and the combined mass
(M) of the drill-pipes and the bottom hole assembly (BHA) lumped at the end
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Figure 2: Schematic for the nonuniform angular distribution of cutters/blades
on a drill-bit. The angle αi is constant as the drill-bit is considered as a rigid
body.

(Fig. 1a). For torsional oscillations, the drill-string is modeled as a system with
torsional spring stiffness (Kt), torsional viscous damping coefficient (Ct) and the
combined rotary inertia of the drill-pipes and the BHA (J) about the rotational
axis (Fig. 1b). Equations of motion for this system in the axial and torsional
directions are [1, 2]

MÜ(t) + CaU̇(t) +Ka {U(t)− V0t} = W0 − ξεad(t)H(Φ̇)H(d(t)) , (1a)

JΦ̈(t) + CtΦ̇(t) +Kt {Φ(t)− Ω0t} = −εa
2d(t)
2 H(Φ̇)H(d(t)) . (1b)

For a drill-bit with n identical, uniformly distributed cutters the total depth
of cut per revolution d(t) will be d(t) = ndn(t) with dn(t), the depth of cut per
cutter, is given by

dn(t) = U(t)− U (t− tn) . (2)

In the absence of the torsional oscillations tn will be 2π
nΩ0

. However, in the
presence of torsional oscillations, this definition of tn does not hold any longer
and tn can be determined by

Φ(t)− Φ(t− tn) = 2π
n
. (3)

In the case of a drill-bit with a non-uniform distribution of cutters/blades as
shown in Fig. 2, different cutters will experience different depths of cut. Note
from Fig. 2 that we have identified the nth cutter with the zeroth cutter and
accordingly, αi represents the angular separation between the (i − 1)th and ith
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cutter. For a drill-bit with n cutters, the depth of cut for the ith can be obtained
as

di(t) = U(t)− U(t− ti(t)) , i = 1, 2, · · ·n (4)

with different delays t1(t), t2(t) · · · ti(t) · · · tn(t) associated with cutters 1, 2 · · · i · · ·n
computed through

Φ(t)− Φ(t− ti(t)) = αi+1 , i = 1, 2, · · ·n (5)

With the above definition of the depth of cut for each cutter and under the
assumption of a homogeneous rock, we can get the depth of cut per revolution
(which governs the resultant cutting forces and torques) as

d(t) =
n∑

i=1
di(t) . (6)

The various state-dependent delays, ti(t)’s, assoicated with different cutters are
independent of each other, making it fairly complicated to compute the stabil-
ity of the system analytically. Also, the above description of the depth of cut
associated with each cutter is valid only when each cutter on the drill-bit is
always in contact with the cut-surface. As soon as any cutter on the drill-bit
loses contact with the surface being cut due to excessive axial vibrations (full or
partial bit-bounce), some of the relations in Eqs. (5) governing the time delays
ti(t) will not remain valid throughout. This shortcoming of the state-dependent
delay differential equation model (SDDDE) model has already been highlighted
in [5]. Since the computation of the time delay ti(t) and in turn the instan-
taneous depth of cut di(t) per cutter becomes involved using Eqs. (4) and (5)
in the event of bit-bounce, we adopt the global model [5] for the depth of cut.
Following the procedure mentioned in [5], we non-dimensionlize the equations
of motion which are reproduced below:

ẍ(τ) + 2ζβẋ(τ) + β2x(τ) = ψδ0 − ψ
n∑

i=1
δi(τ)H(ω + θ̇(τ))H(δi(τ)),

θ̈(τ) + 2κθ̇(τ) + θ(τ) = δ0 −
n∑

i=1
δi(τ)H(ω + θ̇(τ))H(δi(τ)) ,

(7)

where δ0 is the nondimensional steady depth of cut per revolution while δi(τ)
represents the nondimensional instantaneous depth of cut for the ith cutter. Since
we are analyzing the stability characteristics of the steady drilling state which
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will imply always cutting condition, Heaviside functions are dropped from the
Eq. (7) along with tilde (for notational convenience) to get

ẍ(τ) + 2ζβẋ(τ) + β2x(τ) = ψ2πv − ψ
n∑

i=1
δi(τ) ,

θ̈(τ) + 2κθ̇(τ) + θ(τ) = 2πv −
n∑

i=1
δi(τ) ,

(8)

where v = v0
ω0

= n δ0
2π is the nondimensional velocity ratio. In what follows, we

present the modifications in the alternate model for the depth of cut to account
for this variable separation between the different cutters.

2.1 Modified model for the depth of cut
As mentioned earlier in the text, we will adopt the approach developed in [5]
for seamlessly incorporating multiple delays due to the non-uniform distribution
of cutters in the dynamics of rotary drilling. For the sake of completeness, we
reproduce the salient details of the approach. We had defined the cut surface
between two successive cutters by a function L which defines the perpendicular
distance of the material point on the cut surface at a given angle φ and time
τ from some reference (as shown in Fig. 3). Under the assumption that all
cutters are identical and the drill-bit moves as a rigid body, the cut surface
between any two successive cutters is the same for all sections and the domain
of φ is (0, 2π/n]. For a non-uniform distribution of cutters, the domain of φ
for each cutter will be different and it will be given by φ ∈ (0, αi] for the cut
surface between the (i−1)th cutter and the ith cutter. Hence, by considering the
domain of φ to be (0, αmax] where αmax = max(αi, i = 1, 2, · · ·n) and a single
function L representing the cut surface seems like a good option. This option will
work well till all the cutters are always in contact since the cut surface between
any two cutters can be obtained by considering the appropriate portion of that
sliced from the full-domain. This option is good enough for the current purpose
of stability evaluation of the steady drilling state. However, we would like to
present the model which can possibly take care of self-interruptions as well.
Under such conditions, we can no longer represent the cut surface between any
two successive cutters by the same function L. There is a possibility of partial bit
bounce wherein some cutter has lost contact with the cut surface while the other
cutters are still in engagement. Accordingly, the cut surface between some cutters
will remain the same while the cut surface between two other pair of cutters will
continue to be modified by the cutting action. Therefore, we introduce separate
functions Li(φ, τ) to represent the cut surface between the cutters i − 1 and i
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Figure 3: Schematic of the section between two successive cutters.

as shown in Fig. 3. We note that this increases the computational complexity
as there will be separate equations governing the evolution of each function
Li(φ, τ). However, this general formulation will take care of both partial and
full axial self-interruption (bit-bounce) and we will be able to capture the full
nonlinear behavior of the system which is part of future work. Following [5],
we get the evolution of Li(φ, τ) for φ ∈ (0, αi] to be governed by the partial
differential equation (PDE)

∂Li

∂τ
+
(
ω0 + dθ

dτ

)
∂Li

∂φ
= 0 , i = 1, 2, · · · , n . (9)

To get the boundary condition for each PDE in Eq. (9), we note that the cut
surface at the current cutter location (ith cutter) Li(0, τ) during the engaged
position is its actual position, i.e.,

Li(0, τ) = Li(0, 0)− v0τ − x(τ) = −v0τ − x(τ) (withLi(0, 0) = 0) . (10)

During bit-bounce, the cut surface does not modify and we have Li(0, τ) =
Li+1(αi+1, τ) which leads to

Li(0, τ) = min {−v0τ − x(τ), Li+1 (αi+1, τ)} , i = 1, 2, · · · , n . (11)
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The instantaneous depth of cut for the ith cutter can be obtained in terms of
Li(0, τ) and Li+1(αi+1, τ) as

δi(τ) = max {Li+1 (αi+1, τ)− Li(0, τ), 0} = max {Li+1 (αi+1, τ) + v0τ + x(τ) , 0}
(12)

which includes the possibility of the cutter i on the drill-bit leaving the cut
surface (bit-bounce) [5].

For the ease of further algebra, we introduce the function L̄i = Li + v0τ
( [5, 20]) which modifies the governing PDE and the boundary condition (for
i = 1, 2, · · · , n) to

∂L̄i

∂τ
+
(
ω0 + dθ

dτ

)
∂L̄i

∂φ
− v0 = 0 , (13)

L̄i(0, τ) = min
{
−x(τ), L̄i+1 (αi+1, τ)

}
. (14)

The modified relation between the depth of cut for cutter i, δi(τ) and x(τ) in
terms of the new functions L̄i is

δi(τ) = max
{
L̄i+1 (αi+1, τ) + x(τ), 0

}
. (15)

Equations (13), (14) and (15) together with Eq. (8) describe the complete global
axial-torsional dynamics of rotary drilling with a non-uniform distribution of the
cutters on the drill-bit. In the next section, we present a discretization of these
coupled ODE-PDE system which will be further used for the stability analysis
of steady drilling.

3 Reduced order system using Galerkin projection
For the discretization of Eq. (13), we follow the Galerkin projection approxima-
tion developed in [5] in which the function L̄i(φ, τ) is approximated as

L̄i(φ, τ) = a0,i(τ)
(

1− φ

αi

)
+ a1,i(τ) φ

αi
+

N−1∑

k=1
ak+1,i(τ) sin

(
φkπ

αi

)
(16)

with N representing the number of terms in the approximation and aj,i(τ)′s for
j = 0 · · ·N represent the undetermined functions of τ that define the cut surface
between the cutters i− 1 and i. From the above approximation for L̄i(φ, τ), we
have L̄i(0, τ) = a0,i(τ) and L̄i+1(αi+1, τ) = a1,i+1(τ). Hence, the depth of cut,
for cutter i, from Eq. (15) can be written as

δi(τ) = max{a1,i+1(τ) + x(τ), 0} (17)
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and the boundary condition from Eq. (14) becomes

a0,i(τ) = min{−x(τ), a1,i+1(τ)}. (18)

Therefore, a0,i(τ) for each cut surface section acts as a dummy variable with
a0,i(τ) = −x(τ) during cutting and a0,i(τ) = a1,i+1(τ) during cutter-bounce. For
steady drilling, there will be no loss of contact and hence, δi(τ) = a1,i+1(τ)+x(τ)
and a0,i = −x(τ). In the remainder of this work, we will be using these relations
only. On substituting L̄i in Eq. (13), we get

(19)

−ẋ(τ)
(

1− φ

αi

)
+ ȧ1,i(τ) φ

αi
+

N−1∑

k =1
ȧk+1,i(τ) sin

(
φkπ

αi

)

+
(
ω0 + dθ

dτ

){
−x(τ) 1

αi
+a1,i(τ) 1

αi
+

N−1∑

k=1

ak+1,i(τ)kπ
αi

cos
(
φkπ

αi

)}

− v0 = 0 ,

where dot represents derivative with respect to τ . Note that the above equation
is not satisfied identically and the left hand side of the equation denotes the
residue (Re,i) as

Re,i = −ẋ(τ)
(

1− φ

αi

)
+ ȧ1,i(τ) φ

αi
+

N−1∑

k=1
ȧk+1,i(τ) sin

(
φkπ

αi

)

+
(
ω0 + dθ

dτ

){
x(τ) 1

αi
+ a1,i(τ) 1

αi
+

N−1∑

k=1

ak+1,i(τ)kπ
αi

cos
(
φkπ

αi

)}
− v0 .

(20)

This residue Re,i is minimized in the Galerkin projection approach by making
it orthogonal to the shape functions corresponding to the variables aj,i(t) for
j = 1, · · · , N . This results in the following N ODEs governing the evolution of
the aj,i(τ) for each i: ∫ αi

0
Re

φ

αi
dφ = 0 , (21)

∫ αi

0
Re sin

(
φkπ

αi

)
dφ = 0 , for k = 1, · · · , N − 1 . (22)

Note that the above set of equations explicitly involve θ̇ which provides direct
coupling with Eq. (8) along with the indirect coupling with x(t) which determines
the depth of cut. Now, if there are n numbers of cutters on drill-bit, we will end
up with n × N + 4 first order ODEs defining the complete dynamics of the
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drill-string during the continuous engagement condition. We will now use this
reduced system of ODEs to obtain the stability properties of the steady drilling
state. A study of the full nonlinear dynamic behavior of this case has been left
for future work.

4 Steady drilling state and its stability
For the current analysis, we take N = 25 terms for the approximation of Li. For
the linear analysis, the system parameter values of β = 1.5816, ψ = 13.8943, ζ =
0.01, and κ = 0.01 have been used. As noted earlier, steady drilling corresponds
to x(τ) = ẋ(τ) = θ(τ) = θ̇(τ) = 0 with the cut surface during steady drilling
given by L̄i(φ, τ) = vφ ∈ (0, αi) which implies that a1,i(τ) = vαi and aj,i(τ) = 0
for j = 2, · · · , N . Writing this steady state drilling configuration in a compact
form as X0 and linearizing Eqs. (8), (21), and (22) about it, we get the linearized
equation in the state-space form

Ẋ(τ) = AX(τ) . (23)

In the above, X(τ) =
{
aj,i, x(τ), ẋ(τ), θ(τ), θ̇(τ)

}
with j = 1, 2, · · ·N and i =

1, 2, · · ·n, (n being the number of cutters) is the state space vector and A is the
Jacobian matrix of size (n×N + 4)× (n×N + 4) evaluated at the steady state
X0 for the chosen system and operating parameters v and ω0. The stability of
the steady drilling state (X0) for different values of the operating parameters (v
and ω0) can be computed by calculating the spectrum of the Jacobian matrix A.
The boundary between stable and unstable drilling has been obtained as the set
of parameters for which the dominant eigenvalue (the one with the largest real
part) is purely imaginary. The linear stability charts thus produced in the space
of operating parameters v and ω0 have been compared for different distribution
of the angles αi for two and three cutters in Fig. 4. It can be noted from Fig. 4
that for both n = 2 and n = 3, the stable regime is much larger when the cutters
are not equally spaced. An optimization study to obtain the distribution of the
angular spacing between the various cutters leading to most stable configuration
has been performed but not reported here for the sake of brevity. These results
will be presented at the colloquium. For the case of n = 3, we have done
further analysis with a certain specific relation between the angular spacing. In
particular, we have considered a linear variation as well as the case when two
angles are the same. These variations have been considered for milling operation
[16–18] wherein it has been shown that the linear variation gives a larger stable
region. These results for n = 3 are shown in Fig. 5. Also notice in Figs. 4 and 5
that there are multiple stable regimes when the angular spacing for the different
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cutters is different. These preliminary results clearly point towards the efficacy
of mitigating drill-string vibrations using non-uniform distribution of cutters on
the drill-bit.
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Figure 4: Stability curves with random distribution for (i) n = 2 and (ii) n = 3
cutters on drill-bit with β = 1.5816, ψ = 13.8943, ζ = 0.01, κ = 0.01.
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Figure 5: Stability curves with (i) linear distribution and (ii) alternate variation
of cutters with n = 3 in drill-bit with β = 1.5816, ψ = 13.8943, ζ = 0.01,
κ = 0.01.

5 Summary
From the results obtained in this work, we can observe that there is a significant
improvement in the stability boundary with uneven distribution of the cutters
as compared to a uniform distribution. It has to be noted that for the case
of random distribution of cutters, the improvement is much larger than other
variations which have been considered earlier in relation to milling[17]. This
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observation further motivates us to find the optimum angles between the various
cutters to enhance the stability of steady drilling which will be presented at the
colloquium. A detailed nonlinear dynamic behavior of the system is currently
being investigated and these results will also be presented at the collquium.
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1 Introduction

When drilling a deep wellbore with a rotary drilling system, the drillstring often
experiences self-excited vibrations, which can lead to dysfunctions such as bit
bounce, stick-slip and whirling. Those dysfunctions will cause premature failure
of drill bits and other components within the system.

The RGD model [11] analyzes the occurrence of stick-slip vibrations in rotary
drilling systems equipped with PDC bits by reducing the drillstring into a two
degrees-of-freedom coupled axial-torsional system, as sketched in Fig 1(a). The
model also assumes a rate-independent bit-rock interaction law that accounts for
both cutting by PDC inserts and frictional contact on the cutter wearflats [5]
and further simplifies the bit geometry to n identical continuous blades evenly
distributed around the bit axis of revolution. Given the rotary motion of the
drill bit, the cutting process is subject to a “regenerative effect”, as in metal
machining processes [14, 13, 12, 9]. Indeed, the instantaneous depth of cut for
any blade is dn (t) = U (t)− U (t− tn), where U(t) is the current axial position
of the bit and the time delay tn is the time required for the bit to rotate 2π/n, see
Fig 1(b). The regenerative effect thus introduces a single, discrete, and state-
dependent delay tn to the equations governing the bit dynamics. The delay is
implicitly defined by Φ (t)−Φ (t− tn) = 2π/n, where Φ (t) is the current angular
position of the bit. The original RGD model has been extended to include axial
stiffness, damping and multiple degrees of freedom [6, 7, 1, 10, 4, 8, 2].

Three time scales can be recognized in the RGD model: one related to the
torsional oscillations tω =

√
I/C, one related to the axial oscillations tv =

√
M/Kr

(Kr = ζεa, where ζ quantifies the inclination of the cutting force, ε is the rock
specific strength and a is the bit radius), and the time delay tn = 2π/nΩo. A
parameter ψ = (tω/tv)

2 is defined to quantify the comparison between the two
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time scales characterizing the drilling system. For deep well drilling ψ � 1,
in line with field observations that axial vibrations are taking place on a much
faster scale than the dominant torsional vibrations.

There are two major conclusions gained by analyzing the RGD model. First,
there exist two regimes of instability: one evolving on a slow manifold (observed
at higher rotation speed; dominated by marginally unstable torsional poles), and
another evolving on a fast manifold (observed at lower rotation speed; dominated
by unstable axial poles) [4]. Fast configurations rapidly degenerate into stick-
slip or bit-bouncing dysfunction regimes, whereas slow configurations appear to
be marginally unstable. From the partial dynamics with constant time delay, a
critical rotation speed Ωc

o can be recognized to separate these two regimes of in-
stability. Scaled with the characteristic time of axial motion, this quantity reads
ω̃co = Ωc

otv =
√

8/n, where n is the number of symmetric blades. This expression
indicates that the stability of the system depends on bit geometry. A second con-
clusion is that given enough time there always exists a steady-state limit cycle,
which corresponds to the fully developed stick-slip vibrations. By studying the
average response of a limit cycle, the mean torque-on-bit 〈T 〉 is found to increase
with K = Wf,max−〈Wf 〉, the averaged perturbation of the weight-on-bit due to
frictional contact. Decreasing rotation speed will lead to a more unstable axial
motion, more severe axial chattering (recurring loss of contact between wearflat
and rock surface and/or axial stick-slips) and accordingly a larger K. Thus, an
apparent velocity-weakening torque-on-bit law is achieved; it is a consequence
rather than the root cause for the self-excited torsional vibrations.

In reality, PDC bits have a complex arrangement of cutters (Fig 2), which
are responsible not only for multiple delays but also for a delay distribution
that depends on the bit motion history. Since the delay distribution controls
the stability of the bit, it is imperative to develop a model capable of capturing
the exact design of PDC bits. This additional consideration, although greatly
complicating the analysis, is expected to give more realistic insights into the
mechanism of the stick-slip vibrations of a rotary drilling system.

2 Bit Characterization

A PDC bit is composed of fixed cutters mounted on a metal or matrix body. Fig
2(a) shows a typical layout of cutters. For this specific case, there are 32 cutters
placed on 6 blades, 3 full and 3 partial. A full blade has 6 or 7 cutters mounted
on it while a partial one has 4 cutters. Notice that the term “blade” here is
different from the consideration in the RGD model, where each blade is seen
as a continuous cutter. Single cutter experiments show that the cutting force
exerted on a cutter is proportional to the cross-sectional area of the rock groove
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(a) (b)

Figure 1: The RGD model [11]: (a) Quantities involved and sign conventions:
the bottom hole assembly (BHA) is considered as a point mass M and moment
of inertia I; the drillstring is considered torsionally as a spring with stiffness
C, while axially as a string; due to the bit-rock interaction, there are reaction
weight-on-bit W and torque-on-bit T ; the drive system imposes a constant hook
load Ho and a constant rotation speed Ωo. (b) The regenerative cutting process
considered in the model: local depth of cut for each blade is computed as the
shift between the current and a past axial position.

traced by the cutter [3]. Thus to determine such area and compute the cutting
force, it is necessary to project the cutter face onto a plane perpendicular to the
cutter velocity vi. If one rotates the bit without axial advance, and projects
each cutter face onto a plane corresponding to a fixed angular position Φ, the
resulting picture is referred to as bit profile, as in Fig 2(b).

3 Linear Stability

For the linear stability analysis, a “stripping” method is applied to account for
the real bit geometry. In the bit profile, define an array of radial positions {rm},
with rm = m∆r. When the projection of a cutter is intersecting with r = r∗ (r∗

is a particular radial position), a rectangular strip is defined, with its height being
the offset in z between the two intersections and its width the radial position
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Figure 2: Subplot (a) gives a 3D representation of cutter faces mounted on a
PDC bit. For cutter i, some unit vectors are defined: outward radial direction ri
(in x− y plane), tangential direction si (in x− y plane), and cutter face normal
ki. The cutter velocity is given as vi and it is approximately parallel to si.
Subplot (a) shows the bit profile that is achieved by rotating the bit without
axial advance, and projecting each cutter face onto a plane at a fixed angular
position Φ.

step ∆r. This procedure is shown in Fig 3(a). As a result, at r = r∗, the real
bit geometry is approximated by a “toy bit” with rectangular cutters (it looks
like a core barrel). Fig 3(b) shows such a “toy bit”. Particularly this one has 3
cutters, but for a real bit, the generated “toy bit” has different number of cutters
at different r. Each “toy bit” reflects two geometric features not considered in
the RGD model: multiple angular offsets (i.e. the bit is asymmetric) and axial
offsets between cutters.

For the “toy bit” in Fig 3(b), we examine its local depth of cut for varying
uniform motion as shown in Fig 3(c). First, we recognize D, the cutter diameter,
as a characteristic length. In the plot δ = d/D, and d represents the axial bit
advance in one revolution, or equivalently, the instantaneous depth of cut of the
bit for a uniform motion. It is observed that each local depth of cut δi = di/D
varies linearly with δ, with

∑
i δi = δ. Each δi, similar to the local depth of

cut dn in the RGD model, corresponds to a particular delay. Here the term
“delay” has a two-fold meaning: (i) an angular offset between cutters i and p,
Φpi (how much cutter p is ahead of cutter i angularly) and (ii) the time delay
corresponds to that angular offset, which, under uniform motion, is simply given
by to,pi = Φpi/Ωo. Thus, in Fig 3(c), any particular δ can be partitioned into
contributions from each particular angular offset, or a particular delay. Note in
the plot, for a small δ (region I), only the lowest cutter 1 is cutting rock, but
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Figure 3: Subplot (a) illustrates the “stripping” method. Subplot (b) shows a an
example of a “toy bit”. Subplot (c) presents the relation between local depths
of cut and bit penetration considering a toy bit with uniform motion. Note that
such a relation is a function of the bit geometry.

with increasing δ (regions II and III), more cutters become active. Within a
region, the slope of each line is a scaled angular offset. For instance, in region
II, the slope of δ1 reads Φ12/2π and the slope of δ2 reads 1− Φ12/2π. In summary,
the δi− δ plot in Fig 3(c) shows that various axial offsets between cutters result
in a delay distribution that is a function of the depth of cut.

The above method can be extended to a full bit. For the stability analysis,
the bit dynamics is linearized such that each time delay is frozen and the contact
stress on the cutter wearflat is assumed constant. In order to account for the
contribution of a specific delay (related to a unique angular offset Θj) to the
cutting process, two arrays {αj} and {βj} are defined. First introduce two
characteristic quantities W̄ = ζεaD and T̄ = εa2D/2. The dimensionless weight-
on-bit due to cutting Wc = Wc/W̄ , and the dimensionless torque-on-bit due to
cutting Tc = Tc/T̄ can be related to the arrays {αj} and {βj} by: Wc =

∑
j αj (δ)·

δ and Tc =
∑

j βj (δ) · δ. For the cutter layout in Fig 5, the distributions of {αj}
and {βj}, varying with δ, are shown in Fig 4, which are essential for computing
the linear stability map, as in Fig 5. It is observed that critical rotation speed
ω̃co which separates two regimes of instability is a function of δ = d/D; also for a
certain δ, there may exist ω̃co of different values.

4 Time Simulation

For the transient response of the model, a time simulation package is required.
One challenge is to capture the complex regenerative effect introduced by the
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Figure 4: Distributions of {αj} and{βj} for a real PDC bit: Θj is a unique
angular offset and δ = d/D is a scaled depth of cut. The cutter diameter, D, is
recognized as a characteristic length.
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Figure 5: The stability map of a PDC bit under inspection (with 4 full blades, 3
partial blades): Each green dot represents a critical rotational speed correspond-
ing to a left-crossing axial pole while each red dot represents a critical rotational
speed corresponding to a right-crossing axial pole. In other words, for a given
δ, the critical rotational speed(s) will segment the domain into regions of “slow”
and “fast” axial instability. “Slow” axial instability, practically, can be seen as
stable when damping exists in the model. The vertical dashed lines correspond
to the critical rotational speeds in the RGD model: ω̃co =

√
8/n, where n is the

number of symmetric and continuous blades. It is observed that for very small
δo, the RGD solution is retrieved since the delay of 2π dominates.
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Figure 6: (a) Predefined torsional bit motion (b) Predefined axial bit motion (c)
Motion trajectories of cutters (center points) in 3-D view: the crossings indicate
the starting locations; the red, blue, and green curves correspond to cutter 1, 2
and 3, respectively (d) Motion trajectories of cutters in 2-D view: the angular
position is converted to the range of [0, 2π); the red, blue, and green curves
correspond to cutter 1, 2 and 3, respectively (e) Some snapshots of the process
of updating rock profile and finding local depth of cut: for each subplot, the
x-axis depicts rock angular position Φr and the y-axis axial position z. Each
jump in the rock surface, colored in tangerine, is related to a local depth of cut
and number above denotes the corresponding cutter
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Figure 7: Verification of the stability map using time simulation: case 1
is of a slow configuration (δo = 3, ωco = 6); case 2 is of a fast configuration
(δo = 3, ωco = 4.5). For each specific case, 3 subplots are shown: evolutions of
angular and axial speed, evolutions of weight-on-bit due to cutting (dimension-
less, plotted in black) and weight-on-bit due to frictional contact (dimensionless,
plotted in green) and phase diagram of torsional motion
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consideration of realistic cutter layouts.
The basic idea can be deduced from a “toy bit”, like the one in Fig 3(b).

Now consider a bit motion defined by evolutions of angular and axial positions
with time, as shown in Fig 6(a)(b). As the bit can be treated as a rigid body,
the bit motion can be readily translated to cutter motions, as shown in Fig
6(c). Note that all trajectories are identical in shape, but shifted angularly and
axially by constant values corresponding to the angular/axial offsets between
cutters. Introduce a new angular coordinate Φr ∈ [0, 2π) to depict rock surface
at r = r∗. With this, the trajectories in Fig 6(c) can be converted into those
in Fig 6(d). In this view, angular delays and relative heights can be readily
recognized. Notice that while updating the rock profile at different angular
positions, all cutters are advancing at the same “pace”, i.e. sharing the same
angular velocity. Accordingly, a given bit motion can be linked to the variations
of rock profile with time, as in Fig 6(e). Each local depth of cut corresponds to
a discontinuity in the rock profile.

Considering a full bit, this procedure in fact depicts the bit/rock interaction
at a specific radial position r∗. If the result is integrated from 0 to a (radius of the
bit), an extended bit/rock interaction law can be derived to compute transient
weight-on-bit W and torque-on-bit T , which will enter the equations of motion
at each time instance. Thus the time simulation can be conducted, which can be
used to verify the linear stability map achieved previously in Fig 5. Such results
are shown in Fig 7.

5 Conclusions

Under the framework of the RGD model, this work provides a methodology to
bring the actual cutter layouts into the modeling of the self-excited stick-slip
vibrations related to drilling with PDC bits. Linear stability analysis shows that
critical rotation speed that separates two regimes of instability is a function of
the depth of cut. The resulting linear stability map is verified using a time
simulation code. This work provides tools to further explore the key factors of
bit design, which may influence the torsional stability of a rotary drilling system.
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Drilling experiment to determine the efficiency of a second
generation downhole drilling regulator

Nils Reimers

Tomax

Abstract

The economics in retrieving oil and gas resources from basement rock cant reach
its peak potential without the use of Polycrystalline Diamond Compact (PDC)
drill bit technology. The same goes for the development of distributed geother-
mal heat sources. The PDC significance comes from the sum of two important
advantages: First is the mechanical specific efficiency (MSE) or energy to drill.
This figure is close to half with PDC. Second is the potentially longer drilling dis-
tance with the PDC compared to the traditional alternative the insert bit. The
insert bit has its crushing cones rolling on bearings with a fixed life. Because of
the advantage, modern rigs are optimized to meet the PDC requirements. This
includes high-torque pipe and derrick drilling machines. The PDC bias mean
the same rigs are under-utilized if used with old technology. Furthermore, the
wear on the rig and the workforce is increased from more bit trips. The reason
the PDC advantage is not already being fully exploited in the basement is the
high risk of impact damage that comes with the harder rock.

This paper presents the results from a project partly financed by the Nor-
wegian government to investigate the potential of using the newly introduced
counterforce assisted anti stick-slip tool to safeguards modern PDC technology
and make it safe for basement drilling. The Anti Stick-slip Technology (AST)
provides for autonomous controlled of the depth of cut based on the downhole
torque on bit. Hence the regulator prevents the onset of such destructive vibra-
tions that typically occurs if the cutters hangs up and releases in rock fractures.

The project used a modern drilling rig and drilling tests were done at 3000
feet in the South Scandinavian Basement that consists of gneiss and granite and
has natural fractures. The budget for the project allowed new, premium bits to
be used with the best available leeched cutter technology. The new counterforce
assisted AST was used. This tool provides for an extended operational range
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starting at zero foot-pounds of torque, meaning that the tool also regulates the
first contact with the rock surface. The results are recorded and discussed using
accurate downhole and surface data. Methods where applied to evaluate the bit
condition while drilling.

The conclusions from the work where clear and is valuable for basement and
hard rock drillers. Including what not to do with PDC bits in a basement drilling
environment.
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Drilling Automation – Some Industrial Challenges and
Solutions

John-Morten Godhavn and Espen Hauge

Statoil Research Center, Norway

1 Introduction

Drilling automation has gained an increased interest the last few years boosted by
the low oil price and last years focus on digitalization. Automation technology is
a tool not only to drill faster and safer, but also to be able to do a better job while
reducing the number of experts on-site. Terms such as digital twin are being used
when a hydraulic model is running in parallel providing estimates of unmeasured
states as well as detection of anomalies when the model outputs deviate from
the rig measurements. The control of the drilling machines is moving from
remote control to feedback control and even some autonomous solutions have
been developed combining several machines. Some of the technologies recently
piloted will be presented as well as work in progress and technology gaps and
challenges to be solved towards our goal of automating the drilling operation
further.

The drilling process can be divided into three main parts covering a wide
range of topics for automatic control. The most mature part with respect to
automation is the handling of the drill pipe and casing on the rig. The drill
string consists of steel pipes that are screwed together. Each pipe is about 10
meters long. 3 such pipes are often racked together in what is called a stand.
The driller must stop drilling every 30 meters or so, pull the bit off bottom, stop
rotation, hang off the drill string in slips and stop the rig pumps circulation of
drilling fluid (mud) into the drill string. The driller can then extend the drill
string with another stand before drilling can continue. Special robots have been
developed to move the pipes, unscrew/make up the stand by rotating the pipe,
etc. These pipe handling robots are usually controlled by joysticks from the
drillers chairs. Solutions exist where this is automated, and the different robots
are coordinated including anti-collision functionality and fault handling.

The drilling fluid is complex and it is designed to serve several purposes.
The process control for the drilling fluid is mostly manual, and offshore this is
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usually handled by a service (mud) company. The process is like other chemical
processes and will be discussed in some detail in the next section.

Maybe the most interesting part of the drilling process is what goes on down-
hole when we are making hole. This process integrates mechanical systems re-
lated to the drill string and bit (torque, drag, hook load, buckling, vibrations,
directional drilling) with the fluid process (downhole flow, pressure, temperature
and hole cleaning). A substantial effort is put into the planning phase which in-
clude selecting the downhole equipment (bit, sensors in bottom hole assembly),
design the drilling fluid (density, viscosity, etc.), and to optimize the so-called
drilling parameters (pump flow rate, weight on bit, drill string rotation). The
goal is to stay within the constraints dictated by topside and downhole equip-
ment as well as constraints given by the downhole formation (drilling window:
pore pressure, collapse pressure and fracture pressure), and to clean the hole
properly by transporting the cuttings out. Well control is an imperative part of
drilling, and a project on early kick and loss detection is presented below

2 Control challenge: Drilling fluid mixing

This section addresses an open challenge for control. The mixing process for
drilling fluids is a distributed, multivariable constrained control problem with
severe nonlinearities, few online measurements, varying time delays and unmea-
sured disturbances. The drilling fluid (mud) serves several purposes in addition
to being the primary well control barrier. Removal of cuttings from the bottom
of the hole and to transport the particles to surface is of course very impor-
tant. It is desirable that the mud can suspend cuttings (particles of the crushed
rock) and weight material (typically barite added to make the mud denser), so
that these particles do not sag when circulation is stopped. Another important
function is to cool and lubricate the bit and the drill string due to the amount
of energy which is generated when the bit is making hole. In the upper hole,
water may be sufficient, but at greater depths more viscous and dense fluids
are usually required. Deep wells, directional wells, high penetration rates, high
mud weights, and high temperature gradients create conditions requiring close
attention to the flow properties. The viscosity can be increased with polymers
or clay material or decreased with chemical thinners or water. The mud density
is selected according to the so-called drilling window, depicted in Figure 1.

Control of the subsurface pressures in the open hole is very important to
avoid well control events. The lowest well pressure is the static pressure when
the pumps are not circulating.

p = ρgh, (1)
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Figure 1: Drilling window.

Here p is the downhole pressure, ρ is the actual mud density including cuttings,
g is gravity and h is the vertical depth. The mud density must be sufficiently
high, so that the downhole pressure is greater than the pore pressure. If the pore
pressure is greater than the well pressure, then one might experience an influx
of formation fluids into the well. If this is gas, and the driller does not detect it,
then it might end up as a blowout.

The downhole pressure p will increase with the friction in the annulus with
the rig pumps running as well as the additional weight of the cuttings

p = ρgh+ pfric(qin) (2)

Here ρ is the density of the mud including cuttings and pfric is the annulus friction
depending on the flow rate qin. The downhole pressure must be lower than the
tensile strength of the rock in the open hole, represented by the fracture pressure
to avoid loss of mud to the formation.

It may be a challenge to select the mud properties and the flow rate. Good
hole cleaning requires a combination of high enough flow rate and high enough
viscosity. On the other hand, the flow rate and viscosity must often be kept
low to ensure that the downhole pressure is kept below the fracture pressure.
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Figure 2: Mud mixing system.

The drilling fluid is designed in the planning phase and a premix of the mud is
normally sent to the rig. The onsite mud engineer monitors the mud parameters
and adjusts accordingly to maintain the desired specifications. The measurement
of mud parameters is usually a manual process, where a sample is brought back
to the lab. Consider the simplified process illustrated in Figure 2 where the
objective is to control the two main mud parameters: density and viscosity.

The density of the mixed fluid is given by

ρmix =
mmud +mbarite +mbentonite

Vmix
(3)

≈ ρmud + (ρbarite − ρmud)
Vbarite

Vmix
+ (ρbentonite − ρmud)

Vbentonite

Vmix
(4)

Here ρmix and Vmix are the density and the volume of the mixed fluid, ρmud mud
is the density of the mud before the chemicals have been added, ρbarite and Vbarite

are the density and the volume of the added barite and ρbentonite and Vbentonite

are the density and the volume of the added bentonite. For viscosity it is more
complicated. The nonlinear relation between the weight ratio r of the viscosifier,
and the controlled variable, the viscosity µmix of the mixed fluid

µmix = a
(
ebr − 1

)
(5)

r =
ρbentoniteVbentonite

ρmudVmud
(6)

Figure 3 shows the nonlinearity. The process gain ∂µmix/∂r increases with
viscosity meaning that the viscosity is much more sensitive to added viscosifier,
when the weight ratio is already high.
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Figure 3: Viscosity as a function of weight ratio of viscosifier in mud.

There are several development projects ongoing in the industry to automate
the mud mixing process. Online rheology (drilling fluid properties, viscosity
etc.) measurements feeding measurements to a mud mixing control system, en-
abling the system to control the mud rheology using automatic sack cutters and
remotely operated valves for chemical additives. This is a challenging multivari-
able constrained control problem, where in addition to the multivariable nonlin-
ear mixing equations one must deal with constraints and a substantial transport
delay, as one is primarily interested in the mud properties in the annulus. The
time delay from when a new mud is mixed and pumped into well until it can be
seen on the measurements coming out of the well is given by

tdelay =
Vwell

Qpump
=
AdrillpipeLdrillpipe +

∑
Asection-iLsection-i

Qpump
(7)

Here Vwell is the total well volume, which increases as the well is being drilled
and Qpump is the pump rate (time delay will increase when the pumps are off).
Further, Adrillpipe is the cross-section area in the drill pipe with length Ldrillpipe,
while Asection-i is the cross-section area for annulus for a given section i of length
Lsection-i. Typically, the transport delay is one hour or more, and a controller
must take this into consideration. Also, there are unmeasured disturbances,
such as losses and contamination of the mud at the bottom of the well. Some
fluids or particles from the mud might be left downhole to form a so-called mud
cake, or filter cake, while cuttings and formation fluids, e.g. gas boiling out of
the cuttings, might contaminate the mud and influence the mud properties that
we want to compensate for. Lastly, the mud properties are highly sensitive to
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temperature. The temperature at the mud rheology sensor must therefore be
compensated for as well.

3 Estimation challenge: Early kick and loss detection

This section addresses a project the authors have been working on the last 2
years: estimation of influxes of formation fluids into the well, or losses of drilling
fluids from a well during drilling.

Well control is a fundamental and prioritized task when drilling wells. Early
detection of kicks (influxes of formation fluids to the wellbore) and losses (drilling
fluid lost to the formation) is very important. Conventionally, influxes and losses
are detected by the driller or the mud logger by monitoring trends. They mainly
look at the active volume of drilling fluids on the rig, but also the flow out
sensor (often a simple indicator, such as a paddle), the pump pressure, gas-in-
mud sensors on the rig, and in some cases also the rate of penetration or hook
load (drilling break). Detection then relies on the drill crews awareness and
experience. During tripping they use a trip sheet with the expected volume
changes based on steel volume in or out of the well. Kick and loss detection
based on driller awareness often works well. However, it relies heavily on the
drillers experience and work-load. An undetected event can escalate into a se-
vere situation, blowout being the most severe, if not handled early. Kicks and
losses during transient events such as when ramping the rig pumps down are
particularly challenging to detect. Existing technologies for detecting kick and
loss events include simple solutions based on active volume, with alerts to the
operator being raised if the active volume exceeds or falls below threshold values.
Often, these are not sufficiently accurate and they also raise false alarms. Other
systems, such as services based on high accuracy flow meter monitoring can be
used, but these are expensive, owing to the requirement to modify the rig, and
to provide 24-hour monitoring with experts being onsite.

If a kick or loss event is detected, drilling is stopped and well control proce-
dures are used to handle the situation. This can go on for several days. If the
situation is more severe, the wellbore may need to be plugged and the on-going
section must be re-drilled with a side track, resulting in up to a month of lost
time. The earlier a kick or loss can be detected, the easier it is to handle the
situation and ensuring that it does not develop into something more serious.

Kick and loss detection is more challenging on floating rigs in rough sea
experiencing rig heave. The marine drilling riser has a flexible joint extending in
length when rigs goes upwards with the waves and reducing in length when the
rigs goes downwards. This means that the volume in the riser is changing quickly
an this has a very large effect on the flow out rate from the well. The active
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volume measurement is also directly influenced by the rig roll and pitch motion.
Algorithms for kick and loss detection must consider these heave induced effects.
Typically, some filtering is required, resulting in some delay in the detection of
events.

3.1 Data- and test-driven development

Statoil has been working on internal development of kick and loss detection al-
gorithms since 2014 following up previous projects in collaboration with others.
The approach taken was inspired by recent developments using data driven meth-
ods. We started by collecting a library of field data from our operations in the
order of 1000+ hours contained in 30+ data sets, each about 24 hours long and
some of these containing a true loss/kick event. It is believed that these data
sets cover most of the challenges related to field data, such as outliers, noise,
hole in data, vendor specific variable naming, manual resets, sensor accuracy,
etc. If our software gives good results on these data sets, then we should expect
similar results in real time when deployed on a new rig or when drilling a new
well. Automated tests were developed to test the algorithm on these data sets
in one batch, and evaluation scripts calculated our main KPIs: false alarm rate,
and probability of detection (true kick/loss events). In addition, the software
development has been test-driven, i.e. we have developed unit tests, and other
tests of the various software modules, as a part of the code development.

3.2 Modeling

We chose an approach using simple dynamic input-output models with a few
model parameters. To avoid the need for configuration and model calibration,
and to allow for changes in the model parameters, we decided to go for adaptive
models, where the model parameters are adjusted in real time to fit the data
observed. The challenge is then how and when to adjust the parameters. We
need to balance the parameter updates by adjusting enough to track the data
and avoid false alarms, but not too much hiding true kick and loss events.

3.2.1 Flow in

The most important input parameters for the driller that influence well control
are the rig pump flow rate and the hook velocity. When the drill string is moved
into or out of the well with a velocity vpipe, then a compensated flow in rate
including steel volume is given by:

qcomp = qin +Apvp (8)
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Here the pipe velocity is the time derivative of the bit depth and Ap represents
the cross-section area of steel pipe moving in or out of the well bore.

3.2.2 Flow out

The flow out rate qout measurement is calibrated to track the true flow out with
a bias (offset) kbias and a scale factor kscale:

qout = kscaleqmeas + kbias (9)

The expected flow out rate qexp is modeled as a lowpass filtered and delayed
function of the compensated flow in rate:

qexp =
qcomp(t− τd)

1 + τcs
(10)

The parameter values time delay τd and time constant τc are found during pump
stops and pump starts to best fit the calibrated measurement of calibrated flow
out rate qout.

3.2.3 Pump pressure

The expected pump pressure pexp is modeled as a stepwise linear function of
the flow in rate:

pexp = p0,inj +





b1qcomp + p01, for 0 < qin < qpivot,1

...

bKqcomp + p0K , for qpivot,K−1 < qin < qpivot,K

(11)

where p0,inj is an injection term. The function of the injection term is to
compensate for slow variations in pressure due to, for example, the length of the
well and the weight of cuttings in the annulus. The parameters bi and p0i are
adjusted to best fit the measured pressure when the flow in rate is near constant.

3.2.4 Active volume

The expected active volume Vexp and the mud volume in flowline Vfl are modeled
with a simple linear dynamic model driven by the compensated flow in rate:

qfl = kvolVfl(t) − kflowqcomp(t) (12)

d

dt
Vfl = qcomp(t− τV ) − qfl(t) (13)

d

dt
Vexp = qfl(t) − qcomp(t− τV ) + qloss(t) (14)
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The time delay τV along with the parameters kvol and kflow are found to best
match the measured active volume measured during a pumps off/on event. The
variable qfl is an estimate of the flow rate out of the flow line and into the active
pit. The variable qloss is an estimate of mud lost on the shakers.

3.2.5 Alarm logic by voting

Once the expected measurements have been calculated, a detection algorithm
combines the information from the different measurements and the deviations
from the corresponding models to determine whether an influx or loss event may
have occurred. Estimated influx/loss volumes are calculated by accumulating
deviated measurement values:

VIOflow =

∫
qIOflow =

∫
qmeas − qexp (15)

VIOrpes =

∫
f(pIO) =

∫
f(pmeas − pexp) (16)

VIOvol = Vmeas − Vexp (17)

Here qIOflow is the deviated flow out rate, the difference between the measured
flow out rate and the expected flow out rate from the model. The qIOflow value
is accumulated into a corresponding gain/loss volume VIOflow. Similarly, pIO is
the deviated pump pressure, determined as the difference between the measured
pump pressure and the expected pump pressure. The deviation in pressure is
calculated to an assumed representative gain/loss flow rate, which again is accu-
mulated into a gain/loss volume VIOpres comparable with the volume calculated
from the deviated flow out. Lastly, VIOvol is the deviated active volume deter-
mined as the difference between the measured active volume and the expected
active volume. The 3 calculated gain/loss volumes VIOflow, VIOpres and VIOvol are
then assessed. The main mechanism of our voting algorithm is to generate a
kick alarm if 2 out of 3 of these volumes are positive and above given thresholds,
while a loss alarm is generated if 2 out of 3 of these volumes are negative and
below given thresholds. In addition, we have custom-made alarms for large de-
viations on single gain/loss volumes and a separate module to generate alarms
while tripping. The algorithm can either run locally at the rig, generating an
alarm on the drillers screen, or alternatively remotely, generating an alarm in a
real-time support center. When an alarm is raised, appropriate action should be
taken, either to verify that everything is ok or to stop drilling and initiate the
appropriate well control procedure.
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Figure 4: Performance of the models for expected flow out, pump pressure and
active volume during a simulated connection.

3.3 Results

The algorithm presented above has been tested both on a library of field data and
in real time operations, both offshore on a floating drilling rig with presentation
on the drillers screen and remotely onshore streaming data in real time. The
results are promising. Most of the true events have been detected and there
has been a limited number of false alarms. Some of the false alarms can be
explained by unmeasured disturbances, such as starting and stopping of a boost
pump, pumping high viscosity pills, etc. The algorithm is still being improved.
Results are displayed in Figure 4 and Figure 5.

In Figure 4, the upper plot shows the bit depth and the hole depth. It is
seen how they pull off bottom about 5 meters before they stop the pumps and
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Figure 5: Simulated loss situation.

make a connection. The second plot shows the flow in rate, the noisy flow out,
and the expected flow out from the model. The third plot shows how well the
measured and the expected pump pressure are aligned. The lowest plot shows
the very good alignment between the measured and expected flow back in the
active volume. In Figure 5, the pressure drops almost 4 bar and the flow out
rate drops with about 400 lpm at about 1450 minutes. The active volume starts
to drop shortly after and the alarm goes off after 11 minutes later.
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4 Conclusion

An overview of the drilling process has been given showing how multidisciplinary
drilling automation is with application in both robotics, process control and
mechanical systems control. The challenge of controlling the drilling fluid mixing
has been outlined and an ongoing project on kick and loss detection has been
described. The kick and loss detection falls in the category of machine learning,
not using neural nets, but more a classical approach now referred to as feature
engineering, where process knowledge is utilized in the learning. The drilling
process is a batch process, unlike e.g. production. The well is extended, different
kinds of drilling fluids are used, and new types of rock are exposed as you get
deeper. The authors believe that this is a good case for using data driven methods
during the operations opposed to the 1st principles models that are being used
during planning.
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1 Introduction

Managed Pressure Drilling (MPD) is a method for fast and accurate pressure
control in drilling operations. It has been introduced to overcome drawbacks
of conventional pressure control methods, such as the incapability of rejecting
transient pressure fluctuations [14]. In MPD, the annulus is sealed off at the
top with a rotating control device and the mud is circulated out of the well
through a choke valve. This combination provides a surface back pressure that
can be controlled by manipulating the choke. In automated MPD systems, the
surface pressure, and thereby the Bottom-Hole Pressure (BHP), is controlled by
an automatic control system [13, 6]. The achievable accuracy and efficiency by
this control system is dependent not only on the control design method, but
also on the hydraulics model used for designing the control system. This model
should be accurate enough to capture the essential dynamics of the system and,
at the same time, the complexity of the model should be limited to allow for the
use of established system-theoretic analysis and design techniques.

This research has been carried out in the HYDRA project, which has received funding from
the European Union’s Horizon 2020 research and innovation program under grant agreement
No 675731
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In principle, hydraulics models for MPD systems come in the form of high-
fidelity Partial Differential Equations (PDE). From a control perspective, these
models are too complex to be used directly for model-based controller design
and, thus, further simplification/reduction is needed. Complexity-reduction
approaches for these systems may be split into three groups. Firstly, the ap-
proximation of high-fidelity models by low-order Ordinary Differential Equation
(ODE)/PDE models based on a time-scale separation has been proposed in [6, 2].
Such models are, however, incapable of capturing essential transients such as the
propagation of pressure waves. Ignoring such phenomena in modeling and con-
trol design can cause a failure in the accomplishment of control objectives, such
as the effective rejection of transient pressure fluctuations. It can even cause
instability, which is especially probable in the case of long wells [10]. Secondly,
model reduction can also be achieved by using low-resolution discretization of
the PDE model based on, for example, a staggered-grid approach [10]. This,
however, suffers from the lack of a quantitative measure on the achieved accu-
racy. Thirdly, model reduction can be performed based on a combination of a
fine discretization, reducing the PDE model into a high-order ODE model, and
automatic model order reduction techniques. Such an idea has been used in [12]
for complexity-reduction of an MPD control system, and in [9] for deriving a
control-oriented model for MPD systems. However, the high-complexity models
in both cases were linear and the reductions were performed without providing
any guarantee on accuracy.

In this paper, the third type of approach is pursued to obtain a control-
oriented model for a nonlinear single-phase MPD system. Given 1) the spatially
discretized ODE model combined with 2) (local) nonlinear boundary conditions,
the resulting model is a nonlinear system comprising high-order linear dynamics
with local nonlinearities. For this class of systems, a model order reduction pro-
cedure has been recently developed in [3]. This method, unlike many other model
order reduction methods for nonlinear systems, preserves key system properties
(such as L2 stability, a form of input-output stability). Moreover, it provides a
computable error bound on the error induced by the reduction.

The remainder of this paper is organized as follows. Section 2 is devoted to
the mathematical modeling of the system. In Section 3, the nonlinear model or-
der reduction procedure is described. Illustrative simulation results are presented
in Section 4 and, finally, conclusions are presented in Section 5.

2 Modeling of MPD system

An MPD system, as in Fig. 1, can be regarded as two equivalent long pipes,
which are connected through a bit in the middle. One of these pipes models
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Figure 1: A simplified schematic diagram of an MPD system.

the drillstring and the other one the annulus. Moreover, the inlet and outlet
of the connected pipes are connected to the pump and choke, respectively. A
single-phase laminar flow, which is the case in many drilling scenarios, in a pipe
can be accurately described by a linear PDE system [1]

∂q

∂t
+ Ψ

∂q

∂x
= −F (x)q, (1)

with

q =

[
q1
q2

]
:=

[
ρ
ρv

]
,Ψ =

[
0 1
c2l 0

]
, F =

[
0 0

g sin(θ(x)) 32µm
ρ0d2

]
,

and where x ∈ [0, l] and t are the spatial and time variables, respectively, and l it
the length of the pipe. The liquid density, velocity, and pressure are denoted by
ρ(x, t), v(x, t) and p(x, t), respectively, whereas µm, d, θ(x), g and cl are the liquid
viscosity, the hydraulic diameter of the pipe, the pipe inclination, gravitational
acceleration, and sound velocity in liquid, respectively. The equation of state,
describing the relation between the pressure and density, is chosen as [6]

p = c2l (ρ− ρ0) + p0, (2)
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where p0 and ρ0 are the reference pressure and density, respectively.
The MPD system is modeled by a series connection of two pipe models of

the form (1) and a number of the boundary condition which are introduced in
the sequel. The first boundary equation imposed by the pump equation is given
as

Jp(t)− φdqd2(0, t) = 0, (3)

where φ is the cross-sectional area and Jp is the pump mass flow rate, see Fig. 1.
In this context, a sub/superscript a refers to the annulus and d to the drillstring.
The second and the third boundary equations describe the outlet of the drillstring
and the inlet of the annulus. Those are derived using the bit equation and read

z(t)− φdqd2(l, t) = 0, z(t)− φaqa2(0, t) = 0, (4)

where z(t) represents the mass flow rate through the bit. The latter is given by
the nonlinear bit model

ż =

{
−β1z2 − β2z + β3∆ρdh, for z > 0,

max(0,−β1z2 − β2z + β3∆ρdh), for z = 0,
(5)

where ∆ρdh = qd1(l, t)− qa1(0, t), and the parameters β1, β2 and β3 are dependent
on the well parameters and the bit parameters Cd and An, which are the bit
constant and bit nozzle area, respectively. The last boundary equation is given
by the choke equation

Jc(q
a
2(l, t))− kcclG(zc)fc (qa1(l, t)) = 0, (6)

where Jc, kc, zc(t) and G(zc) are the choke mass flow rate, the choke flow factor,
the choke opening and the choke characteristic equation, respectively. Also,
fc(q

a
1(l, t)) = sgn(r)

√
|r|, where r = 2qa1(l, t)(qa1(l, t)− ρ0).

2.1 Finite-dimensional model

As mentioned before, in this modeling approach the PDE model (1) needs to
be spatially discretized. Here, we use a so-called Kurganov-Tadmor scheme [8]
for spatial discretization and a characteristics-based method [5] for treating the
nonlinear implicit boundary conditions of the system. After performing the
discretization and some algebraic manipulation, one arrives at an ODE model
in a Lur’e-type form [7], composed of an interconnection of a linear subsystem
and a nonlinear static mapping. Most of the drilling time is spent on the drilling
ahead operation, during which the pump flow rate is kept constant at some
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Σlin

h(w, ũ2)

ũ1

ũ2

v
w

y
Γ

Figure 2: A block diagram of the finite-dimensional model in a Lur’e-type form.

nominal value J∗p and the choke opening may have just small variations around
a nominal value z∗c , to compensate for transient pressure fluctuations. Thus,
it is reasonable to change the origin of the resulting Lur’e-type system to an

operating point that corresponds to the inputs u∗1 =
J∗p
2φd

and u∗2 = kcclG(z∗c )
2φa . The

value z∗c is designed such that the resulting surface pressure is larger than the
reference pressure p0 for normal drilling operations, thereby keeping the system
controllable in practice. We finally obtain the Lur’e-type system

Σlin :





Ẋ =AX +Buũ1 +Bww,

v =CvX +Dvuũ1 +Dvww,

y =Γv,

(7)

Σnl : w = h(v, ũ2), (8)

where X ∈ Rnc is the high-dimensional state vector, v ∈ R2 and w ∈ R2 are
internal inputs and outputs of the linear sub-system Σlin, connecting it to the
nonlinear sub-system Σnl, and y ∈ R is the system output. Also, a tilde “ ˜
” indicates the difference between a variable and its operational (steady-state)
value denoted by ∗. The mapping h(·, ·) is nonlinear function that stems from the
nonlinear boundary conditions. A simple block diagram of the model is shown
in Fig. 2.

It should be mentioned that we choose the pressure upstream the choke, pc
as in Fig. 1, as the output y here, since it is the output that is typically used
for feedback control [6]. This output is obtained by passing v through a linear
mapping Γ, as in Fig. 2.

3 Nonlinear Model Order Reduction

3.1 Model Order Reduction procedure

The nonlinear model (7) and (8), denoted by Σ = (Σlin,Σnl), is in the form of
a feedback interconnection of a high-order linear subsystem Σlin and low-order
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Σ̂lin

h(ŵ, ũ2)

ũ1

ũ2

v̂
ŵ

ŷ
Γ

Figure 3: A block diagram of the reduced nonlinear model.

nonlinear subsystem Σnl. This particular structure enables us to reduce the
model complexity by only reducing the linear subsystem using existing model
order reduction techniques for linear systems, such as balanced singular per-
turbation [4, 11], which preserves the steady-state response. This leads to a
reduced-order linear subsystem Σ̂lin of the following form

Σ̂lin :





˙̂
X =ÂX̂ + B̂uũ1 + B̂wŵ,

v̂ =ĈvX̂ + D̂vuũ1 + D̂vwŵ,

ŷ =Γv̂,

(9)

where X̂ ∈ Rk, k < nc, and the dimensions of the inputs and outputs remain un-
changed. Balancing-based model order reduction methods preserve stability and
minimality, and provide a bound on the reduction error of the linear subsystem,
such that for the H∞-norm of the difference between Σlin (with v as output) and

Σ̂lin, we have
∥∥∥Σlin − Σ̂lin

∥∥∥
H∞
≤ εlin, εlin = 2

nc∑

j=k+1

σj , (10)

where σj is the jth Hankel singular value of Σlin [11].
Finally, the interconnection of the original nonlinear Σnl subsystem and the

reduced linear subsystem Σ̂lin leads to the reduced-order nonlinear system Σ̂ =
(Σ̂lin,Σnl), a block diagram of which is shown in Fig. 3.

3.2 Properties of original and reduced-order systems

If a number of conditions hold [3], it can be guaranteed that the described
model order reduction technique preserves stability properties and provides a
computable bound on the reduction error in terms of L2-induced system norm
for the reduced-order nonlinear system Σ̂. These conditions are: 1) the linear
subsystem Σlin is asymptotically stable and 2) the small-gain condition

µwvγvw < 1, (11)
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holds, with γvw the (incremental) L2-gain of Σlin corresponding to w as input
and v as output, and µwv is an upper bound for the incremental L2-gain of Σnl

from v to w.
If Σ satisfies all the aforementioned conditions, then it has a bounded incre-

mental L2 gain (from input ũ =
[
ũ1 ũ2

]T
to y) with bound

γyu =
√

2 max (γyu1 , γyu2) . (12)

Moreover, the origin is locally asymptotically stable. Here, the gains γyu1 and
γyu1 are given as γyu1 =

γyvγvu1
M , γyu2 =

γyvγvwµwu2
M , respectively, withM = 1− µwvγvw,

γyv the L2 gain from v to y, γvu1 the incremental L2 gain from ũ1 to v and µwu2
the L2 gain from ũ2 to w.

Also, if Σ satisfies all the aforementioned conditions, the feedback inter-
connection Σ̂ = (Σ̂lin,Σnl) is well-posed and Σ̂lin is asymptotically stable, the
following statements hold:

1. The reduced-order system Σ̂ has a bounded incremental L2 gain and the
origin is asymptotically stable for ũ = 0 when

µwv(γvw + εlin) < 1 with εlin in (10). (13)

2. Let (13) hold. Then, the output error y − ŷ =: δy is bounded as ‖δy‖2 ≤
ε‖ũ‖2, with ‖.‖2 denoting the L2 norm and

ε =
√

2
γyvεlin

M̂
max (γ1, γ2) , (14)

where M̂ = 1−µwv(γvw + εlin), γ1 = 1 +
µwvγvu1

M , γ2 =
µwu2
M and γyv is the

L2 gain from v to y.

4 An illustrative case study

To evaluate the accuracy of the reduced-order model obtained by the procedure
discussed in Section 3, simulations are performed with the parameters listed in
Table 1. The nominal inputs are taken as J∗pump = 54 kg/s and z∗c = 0.3.

In Fig. 4, the singular values σi of the high-order linear subsystem are shown.
Clearly, a relatively fast decay begins around j = 20. Here, we choose k = 41,
for which εlin = 0.0194 and the condition (13) holds with M̂ = 0.111. In Fig. 5,
a comparison is performed between the 2× 2 transfer function matrices Gvw of
Σlin from w to v and Ĝvw of Σ̂lin from ŵ to v̂. Clearly, at low frequencies there
is good match between the two linear subsystems and the resonance frequencies
are also well captured by the reduced subsystem.
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Figure 4: The singular values σi of the linear subsystem Σlin.

Remark: The normal drilling operations are performed so slowly that the
high-frequency modes of the system are seldomly exited. But, there are unde-
sirable scenarios, such as choke plugging and heave motion, that excite these
high-frequency modes and cause transient and periodic pressure fluctuations.
Thus, for effective compensation of such fluctuations by means of control, it is
important that the hydraulics model is capable of capturing the major resonance
frequencies of the system, which indeed approximate the wave propagation phe-
nomenon.

In time-domain simulations in Fig. 6, the choke opening is decreased from
its nominal value z∗c to zc = 0.15 with a step change at t = 15 s and the pump
mass flow rate is reduced to 50% at t = 35 s. With these extreme inputs, which
indeed resemble a choke plugging scenario, a comparison is performed between
the original model Σ (M1), the reduced nonlinear model Σ̂ (M2) and a model
obtained from performing a coarse discretization of the PDE with nc = 41 (M3).
Note that M3 has the same order as M2. The response of the model presented
in [6], shown by M4, is also added as it has a good steady-state accuracy. The

Table 1: The simulation parameters.

Par. Value Par. Value Par. Value

l 1817 m cl 745 m/s µm 0.04 kg/sm
θ(x) 61.7o ρ0 1800 kg/m3 Cd 0.8
φa 0.026 m2 p0 1 bar An 7.46× 10−4 m2

φd 0.01 m2 kc 0.0032 ∆l 40 m
nc 645 g 9.81 m/s2
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Figure 5: A comparison between the frequency responses of Σlin and Σ̂lin.

results are reported in Fig. 6. This figure shows that the reduced-order model
M2 gives far more accurate response approximation compared to the discretized
model M3 of the same order, indicating the usefulness of model order reduction
for MPD systems. Moreover, M3 has a better performance in preserving the
fast dynamics of the system compared to M4, but it suffers from inaccuracy
in steady-state, while M4 has a good steady-state performance. The reduced-
order model obtained by the reduction procedure proposed here captures both
the steady-state behaviour and the transients accurately, with a moderate model
order.

5 Conclusion

A nonlinear model order reduction method has been presented for a single-phase
managed pressure drilling system. By using a high-resolution discretization
scheme a new nonlinear control-oriented hydraulics model has been derived for
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Figure 6: A time response comparison between M1 the original model Σ, M2 the
reduced model Σ̂, M3 the model with nc = 41 and M4 by [6].

the system. The resulting model has been decomposed into a feedback inter-
connection of a high-order linear and low-order nonlinear subsystem, permitting
a model reduction procedure that guarantees preservation of key system (sta-
bility) properties and provides a computable reduction error bound in terms of
L2 norm. Simulations illustrate the effectiveness of the presented model order
reduction method for managed pressure drilling applications.
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1 Introduction

Directional drilling allows for the drilling of curved boreholes, which are needed
to exploit unconventional reservoir of oil, gas and mineral resources. 1a shows
a sketch of a directional drilling system. The drillstring can be typically a few
kilometers in length. It is supported at the rig where the rotary speed and
the axial force (hook-load) are imposed. Most of the drillstring is in tension
under its own weight, except for the bottom hole assembly (BHA), which is
in compression to induce a sufficient weight on the bit. The BHA is usually
about one hundred meters long and consists of drill collars, stabilizers ensuring
centering of the BHA in the borehole, a bit penetrating the rock formation, and
a rotary steerable system (RSS). The RSS is a downhole robotic actuator that
steers the BHA in the desired direction. The work presented here considers the
family of tools called push-the-bit RSS. Such a RSS is located between the bit
and the first stabilizer and uses a set of extensible pads to induce a lateral force
on the borehole wall, and thereby on the BHA.

In practice, drilling with such directional drilling technology often results
in self-excited borehole oscillations, called borehole spiraling. An illustration
of borehole spiraling and its two-dimensional equivalent, borehole rippling, is
depicted in 1b. Borehole spiraling has negative effects on the drilling process and
the borehole quality. First of all, it makes it harder to insert a casing after the
borehole is drilled. Secondly, it decreases the drilling efficiency in terms of a low
rate-of-penetration and high drilling costs due to increased drag forces, which
in turn accelerate bit wear. Furthermore, it reduces the accuracy of reaching
a desired target position. Finally, it could induce instability of the obtained
borehole, which, consequently, makes the borehole more likely to collapse.
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Figure 1: (a) Overview of a directional drilling system. (b) Illustration of bore-
hole rippling and spiraling.

Many numerical directional drilling models exist, see [8, 12, 13, 4, 1, 3, 20,
5, 17]. These models do not lead to a closed-form model description for bore-
hole propagation in directional drilling. As a consequence, such models do not
provide insight into the effects of model parameters and RSS actuation on the
borehole propagation and are not suitable for controller design. A closed-form
model description was first developed by Neubert and Heisig [14, 15] and later
by Downton and Ignova [6]. The model of Neubert and Heisig is only applicable
for an actuation mechanism based on the eccentricity of an adjustable stabilizer,
i.e., a point-the-bit RSS, while the model developed by Downton and Ignova is
restricted to small rotations of the borehole evolution.

More advanced analytical models are developed by Detournay, Perneder and
Marck [19, 18, 10]. These models are described by (nonlinear) delay differential
equations, where the states are chosen to be the inclination and the azimuth
of the borehole. These models are able to determine the conditions leading to
oscillatory behavior in the borehole via a linear stability analysis. In [10, 18],
an extension of this model is given which incorporates a saturation of the bit
tilt, as documented in [16, 7]. The bit tilt is defined as the orientation difference
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Figure 2: Non-ideal stabilizers and the bit tilt saturation.

between the bit and the borehole at the bit. 2 gives an illustrative interpretation
of this nonlinearity. In fact, such a saturation of the bit tilt occurs when the
bit gauge contacts a borehole wall. This saturation prevents oscillations to grow
unbounded and naturally leads to steady-state borehole rippling and spiraling.
The model extended with bit tilt saturation in [10, 18] is not given in a closed-
form description.

Another nonlinearity is introduced when considering non-ideal stabilizers,
which are stabilizers that have a diameter smaller than the borehole. Commonly
in modeling directional borehole propagation, it is assumed that stabilizers have
the same diameter as the borehole. However, in practice, this assumption sel-
domly holds due to bit over-gauging and whirling of the bit and the BHA. This
implies that there is some clearance between the stabilizers and the borehole
wall(s) [10], see 2 for an illustration.

In [21], we introduce a modeling framework, based on linear complementarity
systems, that is able to deal with non-ideal stabilizers and also supports modeling
the bit tilt saturation previously used in [10, 18]. The resulting mathematical
model, restricted to planar borehole propagation, is analyzed in order to obtain
insights into key model parameters that control the directional capabilities of
directional drilling systems and the stability of trajectories. In particular, we
are interested in finding conditions leading to borehole rippling. Such insight
can then be used to select the drill bit and improve the design of the BHA such
that borehole spiraling is prevented. Furthermore, this model can serve as a
basis for the development of model-based controllers, which have the objective
to accurately track an intended (predefined) well path [9].

2 Borehole Propagation Model

The evolution of the bit trajectory, and thus the geometry of the borehole, is a
result of the interaction between the drilling structure, being a mechanical object,
and the borehole itself, being a geometrical object. The borehole propagation
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model involves three components, namely (i) a static (beam) model of the BHA of
the drillstring, (ii) a model of the bit-rock interaction, and (iii) a kinematic model
relating the motion of the bit into the rock formation to geometric variables for
the borehole evolution. See 3, for an overview of the components and their
interaction.

Next, we will treat each model component in more detail. The model of the
BHA aims at statically fitting the drillstring inside the already drilled borehole
using the Euler-Bernoulli beam theory. By doing so, we yield expressions for
the forces and the moment experienced by the bit. Signorini’s contact law is
employed to formulate a linear complementarity problem of which the solution
is the contact force experienced by the non-ideal stabilizers and the clearance
between each non-ideal stabilizer and the borehole walls.

The forces and the moment at the bit can be related to penetration variables
using the bit-rock interaction law. These penetration variables relate to the
amount of rock removed by the bit over one bit revolution and, therefore, relate
to the movement of the bit through the rock formation. The bit tilt saturation
is involved in this model component; it constrains the removal of rock in certain
directions when saturated. The linear complementarity problem is extended to
take into account the saturation of the bit tilt as well. This extended linear com-
plementarity problem returns both the contact forces at the non-ideal stabilizers
as well as those associated to the bit tilt.

The kinematic model relates these penetration variables to geometric vari-
ables. These geometric variables represent the evolution of the bit inclination
and, thereby, the borehole inclination over the length of the borehole. The length
of the borehole is taken as the independent parameter.

By combining the three model components, an analytically closed-form de-
scription of the borehole propagation model is derived. The derived model is in
the class of delay complementarity systems [2]. The delay nature of this model
stems from the delayed influence of the borehole geometry on the deformation
of the BHA through the stabilizers. Complementarity relations are used to de-
scribe the unilateral contact of non-ideal stabilizers with the borehole walls and
to model the bit tilt nonlinearity. The modeling framework allows for a compact
notation of the hybrid model, whose dynamics are governed by continuous dy-
namics of borehole propagation and discrete events of unilateral contact of the
non-ideal stabilizers and the saturation of the bit tilt. For the sake of brevity,
we do not provide the mathematical model description here, but rather focus
on illustrating the effect of the non-linearities on the directional response. For
details on the model we refer to [21].
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Figure 3: Borehole propagation model and its three model components.
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Figure 4: Response to multiple steps in RSS force.

3 Steady-State Solutions of Propagating Boreholes

The analytical form of the derived borehole propagation model allows for a com-
prehensive analysis. This analysis involves the response of the model to a step
in RSS force, which is motivated by the fact that such an actuation technique
is used in practice in directional drilling processes. A typical response of the
drilling system on a step in RSS force is depicted in 4. On a length scale suffi-
ciently large compared to the length of the BHA, such a constant actuation leads
to a borehole evolving with a uniform curvature, when viewed at the scale of the
BHA length. The borehole curvature however changes slowly over the increasing
length of the borehole. Under appropriate drilling parameter settings, such a
step in RSS actuation leads asymptotically to a straight inclined borehole where
a balance between the RSS force and the gravity forces exist. These two length
scales are hence associated to two types of stationary solutions, which are given
analytically as a function of the RSS actuation and model parameters in [21].

In such analysis, we identify a key dimensionless group ηΠ [10, 18] which
controls both the directional capabilities of directional drilling systems as well
as the stability of the response. This group represents the active weight on
the bit (being the part of the weight on bit associated with rock cutting), the
flexural stiffness of the drillstring, position of the stabilizers behind the bit, the
bit bluntness, and parameters characterizing the steering resistance of the bit.
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Figure 5: Map of the inclination of stationary solutions versus the step applied
in RSS force for the parameter group ηΠ = {0.1, 0.5, 1.5, 2}.

This parameter group can be interpreted as a pseudo stiffness contrasting the
flexural stiffness of the BHA with the ’stiffness’ of the rock formation. In words,
if the bit is tilted, then the drillstring tends to deform back to its undeformed
shape due to the flexural stiffness of the drillstring, however, this is counteracted
by the rock formation disallowing the bit to change its orientation.

On account of conciseness, we only focus on the second kind of stationary
solutions here, i.e., straight inclined boreholes that evolve along a straight line.
A two-stabilizer BHA is considered, where the last stabilizer is ideal and the sta-
bilizer between the bit and the last stabilizer is non-ideal, like the BHA setting in
2. The borehole inclination versus the applied RSS force is depicted in 5 for sev-
eral values of the parameter group ηΠ. Due to the inclusion of the nonlinearities,
i.e., the non-ideal stabilizers and the bit tilt saturation, the borehole propaga-
tion model exhibits multiple modes, where in each mode significantly different
dynamics are active. As a direct consequence, branches of steady-state solutions
exist, where the line style in 5 corresponds to the branch starting and ending at
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the circular marks. The line styles are defined as follows: solid represents the
non-ideal stabilizer being cleared from both walls and the bit tilt not saturating;
dashed corresponds to the non-ideal stabilizer touching one of the walls and the
bit tilt not saturating; dashed dotted represents the non-ideal stabilizer being
cleared from the walls and the bit tilt saturating; and dotted corresponds to the
non-ideal stabilizer contacting one of the walls and the bit tilt saturating.

Evaluating over ηΠ, we can observe that branches of solutions for which the
bit tilt saturates (partly) exist independently of ηΠ. This can be explained by
the dependency on ηΠ vanishing when the bit tilt saturates. Another observation
is the occurrence of non-minimum phase behavior, where, the borehole evolves,
counter-intuitively, in the opposite direction as the applied RSS force. This is
due to the existence of multiple drilling regimes, where the drilling tendency in
one regime is in the direction of the bit axis and in the other regime along the
lateral force experience by the bit. Furthermore, we can observe that multiple
solutions coexist for the same applied RSS force. This is again directly related
to the inclusion of the nonlinearities.

Recall that each mode has different dynamics and, therefore, induces distinct
stability properties of the stationary solutions in that mode. We utilize a method
based on the spectrum of the underlying delay differential equations [11], to
conclude on the local stability of each solution. The stability classification is valid
as long as the trajectory stays sufficiently close to the examined solution and the
mode during the trajectory does not change. In our analysis, we observed that
within a mode (a branch), all the solutions have the same stability properties.
This allows us to do a the stability analysis for branches of solutions rather than
for a single solution.

In 6, we give a parametric stability analysis for the case where the bit tilt is
not saturated. Here, we analyze the parameter group ηΠ and the dimensionless
BHA length λ, which is scaled with the distance between bit and the stabilizer
closest to the bit. In this diagram, we distinguish between two modes, namely
the non-ideal stabilizer contacting one of the borehole walls and the non-ideal
stabilizer being cleared from both walls. The solutions can exhibit two types of
instabilities: a drift-type instability and an oscillatory-type instability. The drift-
type instability is related to a real pole entering the complex right half plane,
stemming from the influence of gravity, which reverses for specifically ηΠ∗

nc and
ηΠ∗

c , for the no contact and contact mode, respectively. These are the gray areas
in 6. The oscillatory-type instability is related to the geometric feedback of the
borehole sensed through the stabilizers and being amplified at the bit. These are
the red areas in 6. This is a result of complex pole pairs entering the complex
right half plane. For this type of instability, we see stability lobes, which were
also observed in [10, 18]. For the case where the bit tilt is saturated, we do not
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Figure 6: Stability diagram for a two-stabilizer model.

observe the oscillatory-type instability. However, we do observe the drift-type
instability which, again, stems from gravitational effects.

4 Borehole Rippling

Naturally, we can see this parameter group ηΠ as a bifurcation parameter since
it controls the right-most poles (in the complex-plane) of the linearized dynamics
of the borehole propagation model around stationary solutions. In practice, the
parameter group ηΠ is uncertain and might change for example when transition-
ing between two rock layers. We can see that for certain ηΠ and λ values, in the
no contact mode, stable dynamics are active (green areas), implying that per-
turbations will die and the borehole evolves according to the nominal stationary
solution. For the same ηΠ in the contact mode, we observe complex pole pairs
in the right half plane, implying that perturbation will grow in an oscillatory
fashion.

The combination of such stable and unstable dynamics being active in dif-
ferent modes results in steady-state borehole oscillation which we can relate to
borehole rippling. This is illustrated in the following numeric simulation, for
which a two-stabilizer BHA is used where the distance between the bit and the
first stabilizer is identical to the distance between the first and last stabilizer.
The nominal clearance between the borehole and the non-ideal stabilizers is set
to 1 mm and the saturation of the bit tilt is set to 2 degrees. These values
are common in practical situations. As the initial condition, a straight, vertical
borehole under a small inclination is taken. We do not apply a RSS force, which
implies that if the dynamics were stable, then the stationary solution would
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Figure 7: Steady-state borehole rippling.

converge to a straight vertical borehole.

7 contains the results of this simulation in steady-state. The top plot shows
the bit and borehole inclination in degrees. It can be seen that the bit and bore-
hole oscillate near the stationary solution, i.e., a vertical borehole corresponding
to zero degrees. The oscillations in the borehole are essentially a reflection of
the oscillations undergone by the bit. The middle plot shows that the bit tilt
oscillates between the two saturation boundaries. The bottom plot shows the
contact force experienced at the non-ideal stabilizer. Here, we can observe that
the non-ideal stabilizer moves from one side of the borehole to the other side and
back. The short intervals where the contact force is zero represent the intervals
where the non-ideal stabilizer is cleared from both walls.

We have thus shown using this numerical study that the proposed model can
predict steady-state borehole rippling. Furthermore, we have identified for which
model parameters this phenomenon occurs, namely those that trigger this type
of bifurcation.
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5 Conclusions

We presented a non-smooth borehole propagation model for planar directional
borehole propagation. This model incorporates non-ideal stabilizers and the
bit tilt saturation. A group of model parameters is identified which dominates
the directional capabilities of directional drilling systems and the stability of
borehole trajectories. Using a numerical study, we have shown that this model
is capable of predicting borehole rippling and thus provides valuable insight in
this undesired phenomenon.
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1 Introduction

Exploration and production of oil and gas in the deep subsurface, where hydro-
carbon reservoirs are found at depths between 2,000 and 20,000 feet, requires
that a narrow borehole, between 4 and 24 inches in diameter, be drilled using
a slender drill string through a varied downhole environment and along an of-
ten snaking wellpath. Drill string vibrations, and their negative consequences
on ROP and equipment, is a well known phenomenon when drilling for hydro-
carbons. In particular, the torsional oscillations known as stick slip, which are
considered to be the most destructive vibrations, are to be avoided.

Significant literature exists which seeks to explain the incidence of stick slip
through various implementations of bit-rock interaction and various complexities
of drill string dynamic models. The simplest models impose bit-rock interaction
as a discontinuous frictional force at the bit and abstract the drill string as a
lumped mass, representing the bottom hole assembly (BHA) inertia, and a tor-
sional spring, representing the drill-string stiffness [5, 6]. These models may be
confounded by introducing higher complexity dynamics at the bit-rock inter-
action or through higher order models along the drill-string [12, 13], but still
assume that stick slip is incided due to the non-linearity of the frictional force
at the bit. pAll these models have used to demonstrate the occurrence of the
limit cycle which exhibits itself as stick-slip and may be used to various types of
stick-slip mitigation controllers, including simple tuned PID controllers [11, 15],
impedance matching controllers [7], H-infinity controllers [16], sliding mode con-
trollers [14], and others.
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2 Model

We use a distributed model, similar to [4, 3, 8] and described in detail in [2],
where we consider only the torsional dynamics of the drill string. For angular
motion, angular velocity and torque are denoted as as ω(t, x), τ(t, x), respectively,
with (t, x) ∈ [0,∞)× [0, L]. See Fig. 1 for a schematic indicating locations. For
an infinitesimal element dx, the torque is found as the shear strain, or twist
per unit length. Letting φ denote the angular displacement in the string s.t.
∂φ(t,x)
∂t = ω(t, x), we have τ(t, x) = JG

(
φ(t, x)− φ(t, x+dx)

)
/dx, where J is the

polar moment for inertia and G is the shear modulus. Hence the equations for
the angular motion are given by

∂τ(t, x)

∂t
+ JG

∂ω(t, x)

∂x
= 0 (1)

Jρ
∂ω(t, x)

∂t
+
∂τ(t, x)

∂x
= S(ω, x), (2)

where the source term S is modeled as

S(ω, x) = −ktρJω(t, x)−F(ω, x), (3)

where kt is a damping constant representing the viscous shear stresses and F(ω)
is a differential inclusion, to be described, representing the Coulomb friction
between the drill string and the borehole. The viscous shear stress coefficient kt
represnts the combined damping effects of the viscous shear of the drilling mud
and the rolling contact between drill string and the cuttings bed.

The lowermost section of the drill string is typically made up of drill collars
which may have a great impact on the drill string dynamic due to their added
inertia. In particular, the transition from the pipes to collars in the drill string
will cause reflections in the traveling waves due to the change in characteristic
line impedance [4]. We split the drill string into a pipe section with polar moment
of inertia and lengths Jp, Lp and a collar section with the same parameters given
as Jc, Lc.

2.1 Coulomb friction as an inclusion

The Coulomb friction is modeled as an inclusion





F(ω, x) = Fd(x), ω > ωc,

F(ω, x) ∈ [−Fc(x), Fc(x)], |ω| < ωc,

F(ω, x) = −Fd(x), ω < −ωc,
(4)
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Figure 1: Schematic indicating the distributed drill string lying in deviate bore-
hole (left). Schematic illustrating the four parameters determining the friction:
the coulomb friction parameters ωc, Fc, Fd and the viscous friction coefficient kt,
with the shaded region indicating the region of static torque, and the red curve
the dynamic torque (right).

where ωc is the threshold on the angular velocity where the Coulomb friction
transitions from static to dynamic, Fd is the dynamic Coulomb torque, Fc is the
static Coulomb torque, and F(ω) ∈ [−Fc, Fc] denotes the inclusion where

F(ω, x) = −∂τ(t, x)

∂x
− ktρJω(t, x) ∈ [−Fc(x), Fc(x)], (5)

and take the boundary values ±Fc(x) if this relation does not hold. We define
the non-dimensional coefficient frat = Fc/Fd to help characterize the magnitude
of the oscillations. The shape of the friction source term is illustrated in Fig. 1.

3 Model comparison with field data

To validate the modeling approach taken in the present work, a simulation study
was undertaken to compare the behavior of the model to that of recorded field
data. A field comparison is presented which exhibits inerita dominated oscilla-
tions, as categorized in [2]. Field data for a deviated well, the survey of which
is shown in Figure 2, is considered. Rotational data – rotary rpm and torque
– is recorded at 100 Hz and includes both setpoints and realized values. The
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Figure 2: Wellbore survey of the field well

drill-string starts at rest with zero torque at the surface. However, the stored
torsional energy within the drill-string is not known. The drill-string design is a
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Figure 3: Recorded and simulated drill-string response at a bit depth of 1,733
m, using fitting parameters: µ = 0.34, frat = 0.55, ωc = 19 (RPM).
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Figure 4: Control diagram for a ZTorque system with direct pipe torque mea-
surement. For ZTorque Z = 1/ζp is used. If Z = 0, the control diagram is
equivalent to a SoftTorque or stiff speed controller system.

simple directional assembly which is simplified to a 230 meter 53
4” OD BHA and

monodiameter drillpipe to the surface. Downhole rpm and vibration data was
collected for drilling performance improvement and control system verification
and included continuous low frequency (0.5Hz) data as well as occasional burst
sequences of high frequency data (125 Hz).

Recorded field data and a model fit for 1,733 m depth is shown in Figure 3.
The top plot shows the surface (in red) and downhole (dashed) recorded data
as well as the modeled data (in blue and yellow, respectively). The bottom plot
shows surface torque, with recorded data in red and simulated data in blue.

4 Stick-slip Mitigation Controllers

A majority of drilling rigs in the field utilize AC electric top drives controlled
using a variety of variable frequency drives – or inverters – which are capable
of highly accurate, and often high frequency (> 20 Hz), rotary speed control.
A majority of these controllers are simple stiff PI controllers, but two types of
stick-slip mitigation controllers are widely deployed – the older SoftTorque /
SoftSpeed systems and the newer ZTorque systems.

The behavior of a control system may evaluated through the use of a top-
side reflection coefficient – a reflection of ’1’ indicates all energy is reflected back
downhole, while a reflection of ’0’ means all energy is absorbed by the topdrive.
Assuming for the moment a constant set-point, and defining the controller trans-
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fer function C(s) ≡ τm
ω0

we obtain the relation:

τ0(s)

ω0(s)
= C(s) + ITDs ≡ C̄(s), (6)

while the topside reflection coefficient is given as [11]

R(ω) =

∣∣∣∣
C̄(s)− ζp
C̄(s) + ζp

∣∣∣∣
s=jω

. (7)

4.1 Stiff controller

The industry standard controller that is most often used is a high gain PI control
to ensure rapid tracking of the top drive set-point. For this study, we use the
gains

Kp = 100ζp, Ki = 5ITD. (8)

which is similar to gains typically used in the field.

4.2 SoftTorque

The current industry standard in handling torsional vibrations are the two prod-
ucts NOV’s SoftSpeed [11, 9] and Shell’s SoftTorque [7, 15]. The essential ap-
proach of all these solutions is to reduce the reflection coefficient at the top drive
in a certain key frequency range [10].

The approach of SoftSpeed [11] is to set the proportional action to

Kp = 4ζp, (9)

and then tune the integral gain according to

Ki = (2πfc)
2I2TD, (10)

where fc is the frequency (in Hertz) where the minimum of R(ω) is achieved.
Since the transfer funciton of an ideal PID controller writes C(s) = Kp+

Ki
s +Kds,

the minimum of the reflection coefficient is obtained at

argmin
ω

R(ω) =

√
Ki

ITD +Kd
≡ fc2π. (11)
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Figure 5: Topside reflection coefficient of the three considered controllers.

4.3 ZTorque

A newer embodiment of stick-slip mitigation control developed by Shell, ZTorque,
seeks to minimize the reflection coefficient of the top drive for a wider range of
frequencies by measuring the torque from between the drill string and top-drive
τ0, and using this in the feedback controller to “artificially” have the top-drive
match the impedance of the drill-pipe ζp. The drill pipe impedance is given as
ζp = Jp

√
Gpρ where ζp is the characteristic line impedance of the drill string.

For a given pipe torque, the instantenous top drive rotary velocity necessary
to match the pipe impedance is given by:

ω0(t) =
1

ζp
· τ0(t) (12)

To ensure set point tracking, the control system uses a bandpass filter on the
impedance matching rotary velocity – to exclude high frequency noise and low
frequency set point changes – by combining a high-pass and low pass filter.
Therefore, the PI controller acts on a combination of the tracking error ωSP−ω0 ,
and the band-pass filtered measured pipe torque Z 1

s+ 1
thps

1
s+tlps

τ0, i.e. the input
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to the PI controller is

ePI = ωSP − ω0 − Z
s

(s+ 1
thp

)(1 + tlps)
τ0 (13)

where thp, tlp are the high pass, low pass filter time constants. Note that the ω0

measurement passes through an encoder, illustrated in Fig. 4 as a low-pass filter
with time constant ten. Typically, tlp and ten are around 1 to 10 milliseconds and
thp is around 2 to 10 seconds but must be greater than the period of the first mode
of stick-slip. The implementation studied in this talk assumes the presence of a
torque sensor between the top drive and drillstring which is capable of real-time
measurement of pipe torque, τ0.

Topside reflection coefficient of the three considered controllers is shown in
Fig. 5. The SoftTorque controller uses Kp = 4ζp, fc = 0.2(Hz) and the ZTorque
controller a 1 ms speed and low pass filters and a 10 second high pass filter.

5 Simulation study

We consider a rotation startup such as is required after each pipe connection
procedure while drilling a well. In this scenario the stationary drill string is
initially kept in place by the Coulomb friction until enough torque is built up to
overcome it. At which point, pipe-rotation is initiated and the Coulomb friction
is reduced as it changes from static to dynamic. The resulting release of the
stored energy potentially pushes the drill string into a destructive stick slip limit
cycle. We refer to [2] for a more detailed description of this phenomena, where
it is shown that the simulation model used in the present talk is capable of
effectively replicating this type of stick-slip phenomenon.

Figure 6 depicts time series of the bottom rotational velocity and topside
torque for two sets of friction parameters µ and frat. It is clear from these
simulations that ZTorque yields a much slower controller, but one that effectively
avoids reflections in the relevant frequency range, thus mitigating the tendency
of stick slip. The length of time necessary to reach the setpoint rotation speed
is directly related to the time costant of the high pass filter in the ZTorque
system. It is also clear that the severity of the stick slip, and the tendency of
such oscillation to be initiated, is highly dependent on the friction parameters
µ, frat. A thorough treatise of the topic is presented in [1].

6 Sensitivity to filtering and latency

Latency and filtering in rig systems may be included directly in the control
system model presented above, and by evaluating the topside reflectivity as a
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Figure 6: Bottom velocity (top) and topside torque (bottom) as a function of
time, for µ = 0.2 and frat = 0.75 (top) and µ = 0.3 and frat = 0.85 (bottom),
for each of the three controllers.
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function of frequency, their effects on performance may be quantified. During
this talk, a series of examples will be presented which will include the effects of
top drives with large inertias, highly filtered torque or speed sensors and delays in
inverter - control system communication. Every increase in filtering or latency
leads to a decrease in system performance, but this performance degradation
may still yield an effective system in certain scenarios.
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ADVANCES IN CONTROL OF HYPERBOLIC PARTIAL DIFFERENTIAL
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1 Introduction

The drilling process involves transport phenomena: mechanical deformation waves,
pressure waves propagating into the drilling fluid, or simply the transport of mud, cut-
tings, and oil and gas in UnderBalanced Operations (UBO). These dynamics are often
coupled and take a growing importance when the length of the well increases.

From a systems and control perspective, the industrial needs related to these phe-
nomena span the whole field: set point tracking and disturbance rejection for pressure
control in Managed Pressure Drilling (MPD), disturbance estimation for kick manage-
ment, state estimation in UBO to monitor the amount of gas in the well, parameter es-
timation to perform reservoir characterization, or stabilization for severe slugging and
mechanical vibrations. All of these problems have in common their distributed nature
and, most importantly, high uncertainty.

Although the distributed nature of the transport phenomena is not necessary the
bottleneck for all of these questions, it appears that some cases require the associated
delays and wave propagation to be taken into account. We review here advances in
boundary control and estimation of hyperbolic Partial Differential Equations that could
bring solutions to some of these issues. We believe that the methods developed the past
few years have the potential to be successfully applied to problems in drilling. Towards
this end, we illustrate an application to friction estimation during stick-slip oscillations.

2 Torsional vibrations dynamics

To motivate the theoretical developments and illustrate their potential, we describe here
a control problem representative of the class we tackle. Consider the drill-string de-
picted on Figure 1. It undergoes lateral, torsional and axial vibrations that propagate as

This work has been partially supported by the ANR project MACS-Drill ANR-15-CE23-0008-01.
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Figure 1: Schematic view of a drillpipe.

waves along its whole length. The causes for these detrimental oscillatory phenomena
are many, generally associated with side forces [1] or cutting effects [12]. Importantly,
the distributed nature of the wave propagation can play a predominant role, as illustrated
in [4]. In [1], a model describing torsional dynamics is compared with field data, show-
ing excellent accuracy. This result comes at the price of a careful tuning of the model
parameters. More precisely, the model takes the form of a 1-D wave equation along the
linear spatial dimension x, where the source term is due to frictional contact with the
borehole and is modeled as

S(ω,x) =−ktρJω(t,x)−F (ω,x), (1)

where kt is a damping constant representing the viscous shear stresses between the pipe
and drilling mud, ω(t,x) is the angular velocity at time t and position x, ρ is the pipe
density and J its polar moment of inertia. The term F (ω) is a differential inclusion, to
be described, representing the Coulomb friction between the drill string and the bore-
hole,





F (ω,x) = Fd(x), ω > ωc,

F (ω,x) ∈ [−Fc(x),Fc(x)], |ω|< ωc,

F (ω,x) =−Fd(x), ω < ωc,

, (2)

where ωc is the threshold on the angular velocity where the Coulomb friction transitions
from static to dynamic, Fd is the dynamics Coulomb torque, and F (ω) ∈ [−Fc,Fc]
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denotes the inclusion where

F (ω,x) =−∂τ(t,x)
∂x

− ktρJω(t,x) ∈ [−Fc(x),Fc(x)], (3)

and take the boundary values ±Fc(x) if this relation does not hold.
There is a large uncertainty in the distributed Coulomb friction terms Fc(x), Fd(x).

In the next section, we design observers for hyperbolic PDEs in view of estimating these
on-line from topside measurements only.

3 Control design for Hyperbolic PDEs: backstepping design

Backstepping is a control and observer design method first introduced for boundary
control and observer design for PDEs in [13] and described in details in [8]. It relies on
a change of variables such that control (resp. observer) design is “simple” in the new
system of coordinates. We give here an example corresponding to the boundary control
of two coupled transport equations which model, e.g., channel flow [3] or single-phase
liquid flow, e.g. the annulus in Managed Pressure Drilling (MPD) [7]. Consider the
following system of PDEs

(
ut(t,x)
vt(t,x)

)
+

(
λ (x) 0

0 −µ(x)

)(
ux(t,x)
vx(t,x)

)
= Σ(x)

(
u(t,x)
v(t,x)

)
(4)

with the following boundary conditions

u(t,0) = d0v(t,0), u(t,1) = d1v(t,1)+U(t) (5)

The variables u and v represent quantities (e.g. pressure waves) being transported along
the spatial domain x ∈ [0,1]. The quantity u travels left to right while v travels in the
opposite direction, i.e. we have λ (x),µ(x)> 0. At the boundaries of the spatial domain,
the waves are reflected with coefficients d0 and d1, with |d0d1| < 11. Inside of the do-
main, the two states are coupled through the matrix Σ(x) typically representing friction
and gravity effects. These coupling terms are responsible for poor transient performance
and sometimes instability. Note that these equations usually stem from linearizing con-
servation laws around an equilibrium profile. Consider now the following change of
coordinates

(
α(t,x)
β (t,x)

)
=

(
u(t,x)
v(t,x)

)
+
∫ x

0
K(x,y)

(
u(t,y)
v(t,y)

)
dy (6)

1This is a necessary assumption for the system to be robustly stabilizable [10].
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Provided the kernel K(x,y) is appropriately chosen, as described in [5], the equations
satisfied by the new variables α and β read

(
αt(t,x)
βt(t,x)

)
+

(
λ (x) 0

0 −µ(x)

)(
αx(t,x)
βx(t,x)

)
= 0 (7)

with the following boudary conditions

α(t,0) = d0β (t,0), β (t,1) = d1α(t,1)+U(t)+
∫ x

0
L(x,y)

(
α(t,y)
β (t,y)

)
dy (8)

for a certain known kernel L(x,y). Notice that the coupling terms have been moved from
the right-hand-side of the PDE to the controlled boundary of the domain. This suggests
the following control law

U(t) =−kα(t,1)−
∫ x

0
L(x,y)

(
α(t,y)
β (t,y)

)
dy (9)

where k is a design parameter used to trade-off performance versus robustness. Con-
troller (9) ensures convergence of the solutions of (7)–(8) and, equivalently of (5)–(??)
with a decay rate 1

d1−k . Imposing k = d1 leads to finite-time convergence to zero in the-
ory, but with vanishing robustness margins, as detailed in [10, 6, 2]. Transformation (6)
serves as the basis for many extensions. In particular, in [5], a Luenberger observer is
designed, relying on boundary measurements. In [11], a slightly more general state-
feedback controller is obtained through a Port-Hamiltonian approach.

In [9], an integrator is added to (9) to reject constant disturbances, along with
a boundary observer design with added design parameters. This result in an imple-
mentable output-feedback control law with three degrees of freedom that have an intu-
itive impact on set point tracking performance, robustness to noise and uncertainty and
stability. In the next section, we show how these results can be extended to the more
industry-relevant model described in Section 1.

4 Application to friction estimation

4.1 State and parameter observer design

To estimate unmeasured states and uncertain friction terms, we consider the following
observer, based on an approximation of the model of [1] plus linear output error injec-

148



tion terms

˙̂ω0 =−a0ω̂0 +b0v̂(0, t)+BUU(t)− p0(ω̂0− y(t)) (10)

û(0, t) = c0ω̂0(t)+d0v̂(0, t)−P0(ω̂0− y(t)) (11)

ût(x, t) =−λ (x)ûx(x, t)+σ++(x)û(x, t)+σ+−(x)v̂(x, t)− pu(ω̂0− y(t)) (12)

v̂t(x, t) = µ(x)vx(x, t)+σ−+(x)û(x, t)+σ−−(x)v̂(x, t)− pv(ω̂0− y(t)) (13)

v̂(1, t) = c1ω̂1(t)+d1û(1, t)−P1(ω̂0− y(t)) (14)
˙̂ω1 =−a1ω̂1 +b1û(1, t)+ d̂(t)− p1(ω̂0− y(t)) (15)

with




d(ω) = d̂d , ω̂1 > ωc,

d(ω) ∈ [−d̂c, d̂c], |ω̂1|< ωc,

d(ω) =−d̂d , ω̂1 <−ωc.

(16)

and where û, v̂ are defined as

u = ω̂ +
ct

JG
τ̂, v̂ = ω̂− ct

JG
τ̂, (17)

where ct =
√

ρ
J is the velocity of the torsional wave. This model is obtained by writing

the equations in Riemann coordinates and lumping the Bottom Hole Assembly (BHA)
into a single inertial element of rotational velocity ω1. Moreover, we have lumped the
inclusion representing the Coloumb friction at the ODE giving the downhole boundary
condition. This approximation is typically amenable given either of the following two
assumptions:

• Stabilizers located at the BHA ensures that a significant part of the total torque
on the drill-string from side forces is acting on the BHA.

• The inertia of the BHA is sufficiently large so as to ensure that the torque from
the BHA is large compared to that of the distributed side forces on the pipe. This
is a qualitative observation seen from simulations.

However, if both these points do not hold, the approximation could cause the approach
described in this paper to fail. The parameters d̂d and d̂c are chosen to satisfy the fol-
lowing update laws

(
˙̂dd(t)
˙̂dc(t)

)
=





(
k1(ω0− y(t))
k2(ω0− y(t))

)
|ω̂1|> ωc

(
k1(ω0− y(t))
−k2(ω0− y(t))

)
, |ω̂1|< ωc,

(18)
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with k1,k2 > 0. Using a transformation similar to (6), one can find values of the observer
gains and update gains such that when the observer velocity is non-zero, i.e. the observer
state is in slip mode (rather than sticking), then (10)–(15),(18) converges to the true
state. Although no proof of convergence is available for the full nonlinear observer, this
approach yields promising results when applied to field data, as described in Section 3.2.

4.2 Field data validation

We have validated the approach by applying it to a data set corresponding to a 1733
meter-long well with an inclination pattern similar to the one schematically depicted
on Figure 1. Since no bottom velocity measurement is available for this dataset, we
evaluate the performance of the observer using the following two metrics

• we use, as the plant, the simulation model of [1]. The result of this comparison
is depicted on Figure 2: the BHA velocity is accurately estimated and the friction
parameter estimates converge to constant values.

• we use field data and vary the initial condition of the friction parameter estimates.
These results are depicted on Figure 3. One can readily check that the estimates
converge to roughly the same value, regardless of the initial condition, suggesting
some form of robustness of the proposed approach.

References

[1] Ulf Jakob F. Aarsnes and Roman J Shor. Torsional vibrations with bit off bottom:
Modeling, characterization and field data validation. Journal of Petroleum Science
and Engineering, 163:712–721, apr 2018.

[2] Jean Auriol and Florent Di Meglio. Minimum time control of heterodirectional
linear coupled hyperbolic pdes. Automatica, 71:300–307, 2016.

[3] Georges Bastin and Jean-Michel Coron. On boundary feedback stabilization of
non-uniform linear 2× 2 hyperbolic systems over a bounded interval. Systems &
Control Letters, 60(11):900–906, 2011.

[4] Eric Cayeux, Roman Shor, Adrian Ambrus, Parham Pournazari, Pradeepkumar
Ashok, and Eric van Oort. From shallow horizontal drilling to ERD wells: How
scale affects drillability and the management of drilling incidents. Journal of
Petroleum Science and Engineering, 160(October 2017):91–105, jan 2018.

[5] Jean-Michel Coron, Rafael Vazquez, Miroslav Krstic, and Georges Bastin. Local
exponential h2 stabilization of a 2× 2 quasilinear hyperbolic system using back-
stepping. SIAM Journal on Control and Optimization, 51(3):2005–2035, 2013.

150
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Figure 3: Plant (field data) and observer velocities and torque (top) and friction param-
eters estimates (bottom).

152



[6] Jack K Hale and Sjoerd M Verduyn Lunel. Strong stabilization of neutral func-
tional differential equations. IMA Journal of Mathematical Control and Informa-
tion, 19(1 and 2):5–23, 2002.

[7] Agus Hasan. Adaptive boundary control and observer of linear hyperbolic systems
with application to managed pressure drilling. In ASME 2014 Dynamic Systems
and Control Conference, pages V001T09A003–V001T09A003. American Society
of Mechanical Engineers, 2014.

[8] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs: A course on
backstepping designs, volume 16. Siam, 2008.

[9] Pierre-Olivier Lamare, Jean Auriol, Florent Di Meglio, and Ulf Jakob F Aarsnes.
Robust output regulation of 2 x 2 hyperbolic systems: Control law and input-to-
state stability. In American and Control Conference, 2018.

[10] Hartmut Logemann, Richard Rebarber, and George Weiss. Conditions for ro-
bustness and nonrobustness of the stability of feedback systems with respect to
small delays in the feedback loop. SIAM Journal on Control and Optimization,
34(2):572–600, 1996.

[11] Hector Ramirez, Hans Zwart, Yann Le Gorrec, and Alessandro Macchelli. On
backstepping boundary control for a class of linear port-hamiltonian systems. In
Decision and Control (CDC), 2017 IEEE 56th Annual Conference on, pages 658–
663. IEEE, 2017.

[12] Thomas Richard, Christophe Germay, and Emmanuel Detournay. Self-excited
stick-slip oscillations of drill bits. Comptes Rendus Mécanique, 332(8):619–626,
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