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Introduction

Pressure control in drilling

Pressure is controlled from the top.
Open-hole pressure must be kept within constraints.

Drilling �uid

Oil & Gas 
in�ux 3-10 km
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Introduction

Topside schematic

Pressure control is achieved
by a combination of:

I Backpressure (WHP)

I Hydrostatic Pressure

I Frictional pressure

At steady state:

Bottomhole pressure

BHCP = WHP+ G + F
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Introduction

Pressure control in MPD

At steady state:

BHCP = WHP+ G + F

Control goal (simplified):

Ppore < BHCP < Pfrac
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Introduction

Pressure control in UBD

At steady state:

BHCP = WHP+ G + F

Control goal (simplified):

Pcollapse < BHCP < Ppore

I 2-phase dynamics

I Reservoir interaction
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Introduction

Research objective

Simple mathematical models
I Allows the use of more advanced mathematical tools
I Eases implementation and application of results
I Understandable behavior → robust algorithms

Research objective

Two-phase flow modeling for Estimation and Control

I Find the right compromise between model complexity and model
fidelity.

I Develop fit-for-purpose models.

Approach

Analyze system behavior to find the dominating dynamics to be
represented for a given application and timescale.
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Introduction

Control and Estimation challenges

From practical need to control problem

I Characterize operating conditions → Linear stability analysis

I Respect pressure constraints → Disturbance rejection and tracking

I Monitor gas quantity in the pipe → State estimation

I Estimation of reservoir characteristics → Parameter identification

Many important challenges that can be addressed by modern control
techniques.

8/50
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Characterize operating conditions

System under consideration

Z Wc

Wl,injRig pump

Wg,res

WHP = P(L)

BHCP = P(0)

Annulus

Drill string

Drilling bit

I Downhole pressure function of
gas amount and flow:

BHCP = WHP+ G + F

I Gas influx function of downhole
pressure

WG ,res = IPR(Pres − BHCP)

I Feedback loop.
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Characterize operating conditions

Steady State solutions

Drift Flux Model (Lage et al., 2000)

WHP = BHCP +

∫ L

0

− ∂mv2
L + nv2

G

∂s︸ ︷︷ ︸
Acceleration

− (m + n)g sinφ(s)︸ ︷︷ ︸
Gravity

− 2f (m + n)vm|vm|
D︸ ︷︷ ︸

Friction

ds,

AmvL = kL max(Pres−BHCP, 0) +WL,inj(t),
AnvG = kG max(Pres−BHCP, 0) +WG ,inj(t),

}
= Boundary conditions

11/50



Characterize operating conditions

Steady State solutions

Drift Flux Model (Lage et al., 2000)

WHP = BHCP +

∫ L

0

− ∂mv2
L + nv2

G

∂s︸ ︷︷ ︸
Acceleration

− (m + n)g sinφ(s)︸ ︷︷ ︸
Gravity

− 2f (m + n)vm|vm|
D︸ ︷︷ ︸

Friction

ds,

AmvL = kL max(Pres−BHCP, 0) +WL,inj(t),
AnvG = kG max(Pres−BHCP, 0) +WG ,inj(t),

}
= Boundary conditions

11/50



Characterize operating conditions

Steady State solutions

Drift Flux Model (Lage et al., 2000)

WHP = BHCP +

∫ L

0

− ∂mv2
L + nv2

G

∂s︸ ︷︷ ︸
Acceleration

− (m + n)g sinφ(s)︸ ︷︷ ︸
Gravity

− 2f (m + n)vm|vm|
D︸ ︷︷ ︸

Friction

ds,

AmvL = kL max(Pres−BHCP, 0) +WL,inj(t),
AnvG = kG max(Pres−BHCP, 0) +WG ,inj(t),

}
= Boundary conditions

11/50



Characterize operating conditions

Transient simulation

Asymptotic behaviour:

I Red line above blue: move right.

I Red line below blue: move left.
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Characterize operating conditions

Characterising Dynamics

Classification of operating regimes

I Intuitive
BHCP changes in same
direction as WHP.

I Non-Intuitive
Inverse response and rapidly
changing dynamics.

I Unstable
The well is open-loop unstable.

I Overbalanced
One-phase dynamics.
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Characterize operating conditions

At balance/Low-Drawdown drilling

I Underbalanced drilling entails significant benefits.

I A major obstacle to UBD is limitations on allowable drawdown.

I Automatic control could stabilize the well at a low drawdown.
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Two-phase dynamics and timescales
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Two-phase dynamics and timescales

I The Drift Flux Model is the most used model for two-phase flow
in drilling.

I Drift Flux Model, however, not most general model.

I Most general one-dimensional two-phase formulation:
Baer-Nunziato.

I Too complicated for many applications.
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Two-phase dynamics and timescales

The Baer Nunziato Formulation (Baer and Nunziato, 1986)

For two phases: liquid ` and gas g:

Volume advection:

∂αg

∂t
+ vp

∂αg

∂x
= J (Pg − P`), (1)

Mass conservation:

∂

∂t

(
ρgαg

)
+

∂

∂x

(
ρgαgvg

)
= K(µ` − µg), (2)

∂

∂t
(ρ`α`) +

∂

∂x
(ρ`α`v`) = K(µg − µ`), (3)

Momentum balance:

∂

∂t

(
ρgαgvg

)
+

∂

∂x

(
ρgαgv

2
g + αgPg

)
− pi

∂αg

∂x
= viK(µ` − µg) + M(v` − vg), (4)

∂

∂t
(ρ`α`v`) +

∂

∂x

(
ρ`α`v

2
` + α`P`

)
+ pi

∂αg

∂x
= viK(µg − µ`) + M(vg − v`), (5)

Energy balance:

∂Eg

∂t
+

∂

∂x

(
Egvg + αgPgvg

)
− pivp

∂αg

∂x
= −piJ (P` − Pg)

+

(
µi +

1

2
v2i

)
K(µ` − µg) + vpM(v` − vg) + H(T` − Tg), (6)

∂E`

∂t
+

∂

∂x
(E`v` + α`P`v`) + pivp

∂αg

∂x
= −piJ (Pg − P`)

+

(
µi +

1

2
v2i

)
K(µg − µ`) + vpM(vg − v`) + H(Tg − T`). (7)
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Two-phase dynamics and timescales

Hierarchy of relaxation models (Linga, 2016)

Figure: Hypercube representing hierarchy of 2-phase relaxation models. Edges are
relaxation process’ removing an equation. 18/50
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Two-phase dynamics and timescales

Dynamic Drift-Flux Model (DFM)
(Zuber and Findlay, 1965; Evje and Wen, 2015)

Mass & momentum conservation laws

Mass of gas:
∂α`ρ`
∂t

+
∂α`ρ`v`

∂x
= 0

Mass of Liquid:
∂αgρg
∂t

+
∂αgρgvg

∂x
= 0

Combined Momentum Equation:

∂α`ρ`v` + αgρgvg
∂t

+
∂P + α`ρ`v

2
` + αgρgv

2
g

∂x
= S ,

Closure relation

vg = C0vM + v∞, P = c2gρg

20/50
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Two-phase dynamics and timescales

Characteristics of Hyperbolic systems

In quasilinear form:

∂q

∂t
+ A(q)

∂q

∂x
= G (q)

Transport velocities:

I A(q): 3× 3 matrix with eigenvectors λ1, λ2, λ3

I λ1 = vG ≈ 1− 10 m.s−1: liquid & gas (void wave) transport

I λ2 ≈ −λ3 ≈ cM ≈ 100− 1000 m.s−1: pressure waves

Possible to decompose system into fast and slow dynamics.
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Two-phase dynamics and timescales

Approximation

Transformation due to Gavrilyuk and Fabre (1996)

u = (χ`, ρ, vg) =

(
(α` − α∗

` )ρ`
ρM − α∗

`ρ`
, ρM − α∗

`ρ`, vg

)
,

to obtain equivalent system (approximation):

∂

∂t

χ`

ρ
vg

+

 vg 0 0
0 vg ρ

ᾱ0(u)c2M(u)
ρ

c2M(u)
ρ vg

 ∂

∂x

χ`

ρ
vg

 =

00
S̃

 ,

We note that:

I For constants mass rates Wg,W`, the psuedo hold-up is χ` = const.

I Relatively weak coupling to velocity and density dynamics vg, ρ.

I Tempting to “diagonalize” the system.
22/50
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Two-phase dynamics and timescales

System diagonalization

I The transformed mass variable χ` dynamics independent w.r.t. rest of
system.

I For constant mass-rates at the left boundary, χ` = const.

I Then the distributed pressure dynamics become:

∂

∂t

[
ρ
vg

]
+

[
vg ρ

c2M(u)
ρ vg

]
∂

∂x

[
ρ
vg

]
=

[
0

S̃

]
,

[
λs1

λs2

]
=

[
vg + cM(u)
vg − cM(u)

]
I Equivalent to well known wave equation for cM(u) � vg.
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Two-phase dynamics and timescales

System diagonalization

I A topside choke equation introduces an additional slow compressional
pressure mode.

I Choke pressure can be derived from consideration on flow in and out
and expansion of gas in the well.

Figure: Pressure response due to change in choke opening.
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Two-phase dynamics and timescales

Time-scale heuristic summary

10 minutes to hours: Void wave advection (movement of mass)

∂χ`

∂t
+ vg

∂χ`

∂x
= 0

1-10 minutes: Compressional pressure mode

∂P(x=L)

∂t
=

β

V

(
q(x=0)− q(x=L) + TEG

)
,

∼10 seconds: Distributed pressure dynamics:

∂P

∂t
+ β̄

∂v

∂x
= 0

ρ
∂v

∂t
+

∂P

∂x
= F (v) + G
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Automatic controller design

1 Introduction

2 Characterize operating conditions

3 Two-phase dynamics and timescales

4 Automatic controller design

5 Summary
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Automatic controller design

Bode Diagram

I A typical open loop bode diagram is shown below.
I We note that we can accept high uncertainties at very low and very

high frequencies. But, we want low uncertainty at crossover.
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Automatic controller design

Nichols chart

Think of a Nichols chart

I We can accept uncertainties at
very low and very high
frequencies.

I We just need to minimize the
uncertainty around the open
loop crossover frequency around
∼ 1− 2 minutes.

I I.e. discard gas dynamics and
fast pressure modes.

I Only keep: slow pressure mode.
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Automatic controller design

Approximated Pressure Dynamics - one phase

pc

pbh

qc

qres
qbit

z

Full infinite dimensional description:

Pbh

Qc
(s) =

Zc(s)

tanh Γ(s)

lim
s→0

Pbh

Qc
(s) →

tanh Γ→Γ

Zc(s)

Γ(s)
=

β

sV

29/50



Automatic controller design

Approximated Pressure Dynamics - one phase

pc

pbh

qc

qres
qbit

z

Lumped approximation

ṗbh ≈ β

V
(qin − qout)

30/50



Automatic controller design

Approximated Pressure Dynamics - two phase

pc

pbh

qc

qres
qbit

z

First order lumped approximation

ṗbh ≈ β̄(t)

V
(qbit − qc + w(t))

β̄(t) =
L∫ L

0

[
αg(x ,t)
p(x ,t) +

1−αg(x ,t)
βL

]
dx

.

with slow changes in hydrostatic pressure
w(t) and bulk modulus β̄(t).

Key uncertainties:

I Uncertain gas profile αg(x , t)

I High frequency uncertainty due to
model reduction

31/50
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pc

pbh

qc

qres
qbit

z

First order lumped approximation

ṗbh ≈ β̄(t)
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β̄(t) =
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Automatic controller design

Linearize choke equation

Flow out given as qc = Cv (z)√
ρ`

√
pc − pc0.

I define static actuation mapping z(u) = C−1
v

(
qbit

√
ρ`√
u

)
qc =

Cv (z)√
ρ`

√
pc − pc0 = qbit

√
pc − pc0√

u

I Linearize choke equation (around operating point)

q̃c ≈ Kpp̃c − Kpũ

With Kp known and dependent on p̄c and ū.
I Linearized perturbation dynamics, time constant τ(t):

˙̃pbh(t) ≈
1

τ(t)

(
− p̃bh + ũ + w

)
τ(t) =

V

Kp(t)β̄(αg(t))
, Kp(t) =

q̄bh
2CK (t)

1

ū(t)
.
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Automatic controller design

Slow mode time constant product of two parts

˙̃pbh(t) ≈
1

τ(t)

(
− p̃bh + ũ + w

)
τ(t) =

V

Kp(t)β̄(t)
, Kp(t) =

q̄bh
2CK (t)

1

u(t)
.

with time-varying Kp(t) known and β̄(t) uncertain.

 τ(t)

r τ(t)^

 1/r τ(t)^

τ(t)^

I Given estimate τ̂(t)

I Define a robustness coefficient r
giving relative uncertainty in
τ(t) :

τ(t) ∈ [r τ̂(t),
1

r
τ̂(t)]
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Automatic controller design

Minimize control error subject to robustness to uncertainties:

I Time constant τ(t) with coefficient r

I High frequency dynamics p with coefficient ∆τ

Control problem formulation

Find a controller mapping from p̃bh to ũ that robustly minimizes the L2
gain

sup
‖w‖2 6=0

‖Ie‖2
‖w‖2

,

subject to

˙̃pbh =
1

τ(t)
(−p̃bh + ũ + w + τ∆p) ,

İe = p̃bh,

p = ∆(t) ˙̃u, ‖∆(t)‖ ≤ 1, τ(t) ∈ [r τ̂(t),
1

r
τ̂(t)].

34/50



Automatic controller design

Minimize control error subject to robustness to uncertainties:

I Time constant τ(t) with coefficient r

I High frequency dynamics p with coefficient ∆τ

Control problem formulation

Find a controller mapping from p̃bh to ũ that robustly minimizes the L2
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Automatic controller design

Performance / robustness trade-off

Max value of τ(t) (Kick size)
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Summary

Summary

I Classification of UBD operating regimes
I
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Summary

Summary

I Classification of UBD operating regimes
I Strong case for automatic control
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Summary

Summary

I Models for control and estimation should have the right trade-off
between complexity and fidelity.

I Capture the dominating dynamics for the given application.

Time scale heuristic

Time-scale Dominating dynamics
∼ 10 seconds Distributed pressure dynamics

∼ 1−10 minutes Slow compression pressure mode
∼ 10 minutes to hours Void wave advection
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Appendix Application: model based estimation of kick size

Model based influx estimation

pc

pbh

qc

qres
qbit

z
I Detecting influx from reservoir usually

done by

qres ≈ qc − qbit

I Does not account for changes in
pressure and gas expansion.

I Improved estimate using measured
variables pc , qc , qbit to obtain
unmeasured quantity qres

I Need simple model which allows for
“inverting” the dynamics.
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Appendix Application: model based estimation of kick size

Approximated Pressure Dynamics

pc

pbh

qc

qres
qbit

z

Lumped pressure dynamics

ṗc =
β̄

V
(qbit + qres − qc + TXE )

Simplified dynamics of void fraction αg

propagation

∂αg

∂t
+ vg

∂αg

∂x
= Eg(αg)

αg(x = 0) =
qres

C0(qres + qbit) + Av∞

TXE = A

∫ L

0
Egdx
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Appendix Application: model based estimation of kick size

Estimation formulation

I Use lumped pressure dynamics

ṗc =
β

V
(qbit + qres − qc + TXE )

=⇒ β

V
qres = ṗc −

β̄

V
(qbit − qc + TXE )

I Apply low-pass filter 1
τs+1 , estimate θ̂ = 1

τs+1
β̄
V qres :

θ̂ =
s

τs + 1
[pc ]−

1

τs + 1

[
β̂

V
(qbit − qc + T̂XE )

]
with values measured and computed

I θ̂ used to detect kick and estimate IPR and pres :

qres = J max(pres − pbh).
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Appendix Application: model based estimation of kick size

OLGA simulated kick

Performance of reservoir estimation on simulated kick

46/50



Appendix Application: model based estimation of kick size

Application to field data

Application to estimation of kick dynamically handled by Microflux.

I Minimum and maximum values discerned from field logs.

I Initial estimation gives reasonable results.

I Estimation error deviates over time due to lack of feedback.
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Appendix Derivation of reduced DFM

Derivation of reduced DFM

I Liquid mass conservation

∂ [αLρL]

∂t
+

∂ [αLρLvL]

∂x
= 0, ρL ≈ const.

=⇒ ∂αL

∂t
+

∂αL

∂x
vG + αL

∂vG
∂x

= 0

I Gives conservation of void fraction

=⇒ ∂αG

∂t
+ vG

∂αG

∂x
= EG

where EG ≡ αL
∂vG
∂x is the local gas expansion.

I Similarly we obtain:

∂vG
∂x

=
EG

αG

48/50



Appendix Derivation of reduced DFM

Pressure dynamics

I 1-st order pressure dynamics

∂pc
∂t

=
βL
V

(
qL + qG + TEG

− qC
)

I Where the total gas expansion is given as

TEG
= A

∫ L

0
EG (x)dx (8)

I And the distributed pressure from the steady momentum equation

P(x) = pc +

∫ x

L
G (x) + F (x)dx
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Appendix Derivation of reduced DFM

Effective bulk modulus

I Returning to the local gas expansion, use the approximation
∂P
∂t ≈ ∂pc

∂t :

TEG

A
=

∫ L

0
−αGαL

P

(
∂P

∂t
+ vG

∂P

∂x

)
dx

=− ∂pc
∂t

∫ L

0

αGαL

P
dx +

∫ L

0

αGαL

P

(
G (x) + F (x)

)
dx

I Thus the pressure dynamics rewrite

∂pc
∂t

=
βL
V

(
qL + qG + TEG

− qC
)

=
βL

1 + βL
A
V

∫ L
0

αGαL
P dx

(
qL + qG + TXE − qC

)
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