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How to optimize drilling parameters?
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Figure: Net ROP correlation for 36 wells (Maidla et al. (2018)).
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How to optimize drilling parameters?
» Optimal drilling parameters are dependent on changing

conditions.
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How to optimize drilling parameters?
» Optimal drilling parameters are dependent on changing
conditions.
» Varies between wells and from stand to stand.
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ROP and bit foundering

» Drilling becomes inefficient beyond certain WOB (bit
foundering).
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» Drilling becomes inefficient beyond certain WOB (bit
foundering).

45 —
; Fafinvder g? | NUFPM
. wet 0 r’. ;y., 70r|1m
- i I rpm
E o2
z £ ,4.' 4 .
g S 257 o
3 & ZD‘ ,-"J |
= _Jﬂ'rﬁ Fd Aa
10 i P -
5 |
‘ : : . : ol | |
0 200 400 800 800 1000 az a4 a6 48 50 52 54
w{N/mm) WOB (kLhs)

Figure: Bit foundering in laboratory tests (left) due to Detournay et al.
(2008) and as seen in the field (right) due to Dupriest and Koederitz
(2005).
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ROP and bit foundering
» Drilling becomes inefficient beyond certain WOB (bit
foundering).

» Founder point dependent on cutter sharpness, rock
properties, bit cleaning etc.
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Figure: Bit foundering in laboratory tests (left) due to Detournay et al.
(2008) and as seen in the field (right) due to Dupriest and Koederitz
(2005).
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ROP and bit foundering
» Drilling becomes inefficient beyond certain WOB (bit
foundering).
» Founder point dependent on cutter sharpness, rock
properties, bit cleaning etc.
» Optimal WOB constantly changing.
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Figure: Bit foundering in laboratory tests (left) due to Detournay et al.
(2008) and as seen in the field (right) due to Dupriest and Koederitz
(2005).
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How to optimize drilling parameters?

Hypothesis:
1. Optimal drilling parameters cannot be found solely from
data-analysis and modeling ahead of time.

2. It must take the observered conditions of the current
operation into account and adapt accordingly.
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Proposed approach: Extremum seeking control

Arbitrary unknown quadratic function
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Proposed approach: Extremum seeking control

Arbitrary unknown quadratic function
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1. Add periodic perturbance to input
2. Integrating the product of perturbation and output.
3. In phase -> Increase, out of phase -> Decrease.
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Proposed approach: Extremum seeking control

Arbitrary unknown quadratic function
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Arbitrary unknown quadratic function (Krsti¢ and
Wang, 2000)
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Weight on bit control in drilling
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Weight on bit control in drilling

Drill lines

Travelling block

Top drive
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Drill floor

. Top drive suspended by

travelling block

Travelling block moved up
and down by spooling drill
lines

Hanging weight of drilling
system measured as force
at deadline (hook load)
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Block diagrm
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ESC scheme
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Simulation model

Topside boundary: Block velocity
lw,,: Axial force at rotary-table

Lol ~}vy: Axial rotary-table velocity

lx=0

w(x,t)

) }Dislributed states

71| v: Axial bit velocity

x=L
T wy,: Axial force on bit
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Simulation model

lw,,: Axial force at rotary-table

Lol ~}vy: Axial rotary-table velocity

w(x,t)

Vo) }Distributcd states

S v, Axial bit velocity

x=L
T w,: Axial force on bit

Topside boundary: Block velocity
V(t,X = 0) = VO(t)

Distributed dynamics

ow(t, x) ov(t,x)
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Bottom boundary: ROP

My Vi = Wp(Vp, W) — wi + gMan
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Bit-rock interaction

Approximation of weight on bit — ROP relation:
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Bit-rock interaction

Approximation of weight on bit — ROP relation:

A

et » Assume constant rotation wp:
. ‘r
é ) fﬁ% B V (t)
S0 b
, f at)= — (3)
0.5 o wbit
0 200 4("1‘ - :‘“U 800 1000
! I i it}

12/17



Bit-rock interaction

Approximation of weight on bit — ROP relation:
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Auto-driller (Boyadjieff et al., 2003)

» Control hook-load to w;" by PI
feedback:

Vo(t) =Kp(wo(t) — wg®)

t
+ K [ (o) — wP)ar
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> Given w,’ corresponds to a
steady-ste vy =ROP.

13/17



Auto-driller (Boyadjieff et al., 2003)

» Control hook-load to w;" by PI
feedback:

vo(1) =Ko(wo(t) — wp”

t
+ K [ (o) — wP)ar

> Given w,’ corresponds to a
steady-ste vy =ROP.
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ESC scheme
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» System maps 6 to y(0).
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Static map

> At equilibrium we find:
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Static map

> At equilibrium we find:

—ky0, Phase |
y(0) = ¢ $ifae + Ky, Phasell

—koO + dpwpit, Phase lll

Whit nom
Ky = o—— (Mawg — wy

— Wiy
Ka + wpitky )

> Required assumptions:
0 < ky <
2 Wnom < MHWQ Wr..

» Then convergence to Phase II/lll transition as a peak
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Simulation
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Drilling response with extremum seeking control started at 120
seconds.
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