Extremum seeking for real-time optimal drilling control

UJF Aarsnes¹, OM Aamo² and Miroslav Krstic³

¹Norwegian Research Centre ² Norwegian University of Science and Technology ³ University of California, San Diego

Figure: Net ROP correlation for 36 wells [\(Maidla et al. \(2018\)](#page-37-0)).

 \triangleright Optimal drilling parameters are dependent on changing conditions.

Figure: Net ROP correlation for 36 wells [\(Maidla et al. \(2018\)](#page-37-0)).

- \triangleright Optimal drilling parameters are dependent on changing conditions.
- \triangleright Varies between wells and from stand to stand.

Figure: Net ROP correlation for 36 wells [\(Maidla et al. \(2018\)](#page-37-0)).

In Drilling becomes inefficient beyond certain *WOB* (bit) foundering).

In Drilling becomes inefficient beyond certain *WOB* (bit foundering).

Figure: Bit foundering in laboratory tests **(left)** due to [Detournay et al.](#page-37-1) [\(2008\)](#page-37-1) and as seen in the field **(right)** due to [Dupriest and Koederitz](#page-37-2) [\(2005\)](#page-37-2).

- **In Drilling becomes inefficient beyond certain** *WOB* (bit foundering).
- ▶ Founder point dependent on *cutter sharpness, rock properties*, *bit cleaning* etc.

Figure: Bit foundering in laboratory tests **(left)** due to [Detournay et al.](#page-37-1) [\(2008\)](#page-37-1) and as seen in the field **(right)** due to [Dupriest and Koederitz](#page-37-2) [\(2005\)](#page-37-2).

- ▶ Drilling becomes inefficient beyond certain *WOB* (bit foundering).
- ▶ Founder point dependent on *cutter sharpness, rock properties*, *bit cleaning* etc.
- **D** Optimal *WOB* constantly changing.

Figure: Bit foundering in laboratory tests **(left)** due to [Detournay et al.](#page-37-1) [\(2008\)](#page-37-1) and as seen in the field **(right)** due to [Dupriest and Koederitz](#page-37-2) [\(2005\)](#page-37-2).

Hypothesis:

Hypothesis:

1. Optimal drilling parameters cannot be found solely from data-analysis and modeling ahead of time.

Hypothesis:

- 1. Optimal drilling parameters cannot be found solely from data-analysis and modeling ahead of time.
- 2. It *must* take the observered conditions of the current operation into account and adapt accordingly.

Arbitrary unknown quadratic function

1. Add periodic perturbance to input

- 1. Add periodic perturbance to input
- 2. Integrating the product of perturbation and output.

- 1. Add periodic perturbance to input
- 2. Integrating the product of perturbation and output.
- 3. In phase -> Increase, out of phase -> Decrease.

Arbitrary unknown quadratic function (Krstić and [Wang, 2000\)](#page-37-3)

$$
\tilde{\theta} = \hat{\theta} - \theta^* \tag{1}
$$
\n
$$
\frac{d\tilde{\theta}}{dt} = k\alpha \sin(\omega t) \left[f^* + \frac{f''}{2} \left(\tilde{\theta} + \alpha \sin(\omega t) \right)^2 \right] \tag{2}
$$

1. Top drive suspended by travelling block

- 1. Top drive suspended by travelling block
- 2. Travelling block moved up and down by spooling drill lines

- 1. Top drive suspended by travelling block
- 2. Travelling block moved up and down by spooling drill lines
- 3. Hanging weight of drilling system measured as force at deadline (*hook load*)

Block diagrm

ESC scheme

Simulation model

Topside boundary: Block velocity

$$
v(t,x=0)=v_0(t)
$$

Simulation model

$$
v(t,x=0)=v_0(t)
$$

Distributed dynamics

Simulation model

$$
v(t,x=0)=v_0(t)
$$

Distributed dynamics

$$
\frac{\partial w(t,x)}{\partial t} + AE \frac{\partial v(t,x)}{\partial x} = 0
$$

$$
\frac{\partial v(t,x)}{\partial t} + \frac{1}{A\rho} \frac{\partial w(t,x)}{\partial x} = F + G
$$

Bottom boundary: ROP

$$
M_b\dot{v}_b = w_b(v_b, w_L) - w_L + \frac{\overline{\rho}}{\rho}M_b g,
$$

Bit-rock interaction

Bit-rock interaction

Assume constant rotation ω_{bit} **:**

$$
d(t) = \frac{V_b(t)}{\omega_{\text{bit}}} \tag{3}
$$

Bit-rock interaction

Approximation of weight on bit – ROP relation:

Assume constant rotation ω_{bit} **:**

$$
d(t) = \frac{V_b(t)}{\omega_{\text{bit}}} \tag{3}
$$

$$
\blacktriangleright \text{ Weight on bit } w_b(d):
$$

$$
\begin{cases} w_b \in [0, w_{f*}], & d = 0 \\ w_b = w_{f*} + K_a d, & d_b > d \ge 0 \\ w_b \in [w_{f*} + K_a d_b, \infty], & d \ge d_b \end{cases}
$$

Auto-driller [\(Boyadjieff et al., 2003\)](#page-37-4)

 \blacktriangleright Control hook-load to w_0^{sp} $b_0^{\rm sp}$ by PI feedback:

$$
v_0(t) = K_p(w_0(t) - w_0^{sp})
$$

+ $K_i \int_0^t (w_0(\tau) - w_0^{sp}) d\tau$

Auto-driller [\(Boyadjieff et al., 2003\)](#page-37-4)

 \blacktriangleright Control hook-load to w_0^{sp} $b_0^{\rm sp}$ by PI feedback:

$$
v_0(t) = K_p(w_0(t) - w_0^{sp})
$$

+
$$
K_i \int_0^t (w_0(\tau) - w_0^{sp}) d\tau
$$

I Given w_0^{sp} v_0^{sp} corresponds to a steady-ste v_0 =ROP.

Auto-driller [\(Boyadjieff et al., 2003\)](#page-37-4)

► Control hook-load to
$$
w_0^{sp}
$$
 by PI feedback:

$$
v_0(t) = K_p(w_0(t) - w_0^{sp})
$$

+
$$
K_i \int_0^t (w_0(\tau) - w_0^{sp}) d\tau
$$

I Given w_0^{sp} v_0^{sp} corresponds to a steady-ste v_0 =ROP.

ESC scheme

System maps θ to $y(\theta)$.

Static map

 \blacktriangleright At equilibrium we find:

$$
y(\theta) = \begin{cases} -k_{\theta}\theta, & \text{Phase I} \\ \frac{\omega_{\text{bit}} - K_{\text{a}}k_{\theta}}{K_{\text{a}} + \omega_{\text{bit}}k_{\nu}} \theta + K_{y}, & \text{Phase II} \\ -k_{\theta}\theta + d_{b}\omega_{\text{bit}}, & \text{Phase III} \end{cases}
$$

$$
K_{y} = \frac{\omega_{\text{bit}}}{K_{a} + \omega_{\text{bit}} K_{v}} (M_{HW}g - w_{0}^{nom} - w_{f*})
$$

Static map

 \blacktriangleright At equilibrium we find:

$$
y(\theta) = \begin{cases} -k_{\theta}\theta, & \text{Phase I} \\ \frac{\omega_{\text{bit}} - K_{\text{a}}k_{\theta}}{K_{\text{a}} + \omega_{\text{bit}}k_{\text{v}}} \theta + K_{\text{y}}, & \text{Phase II} \\ -k_{\theta}\theta + d_{\text{b}}\omega_{\text{bit}}, & \text{Phase III} \end{cases}
$$

$$
K_{y} = \frac{\omega_{\text{bit}}}{K_{a} + \omega_{\text{bit}} K_{v}} (M_{HW}g - w_{0}^{nom} - w_{f*})
$$

 \blacktriangleright Required assumptions:

1.
$$
0 < k_{\theta} < \frac{\omega_{\text{bit}}}{K_a}
$$
\n2.
$$
w_0^{\text{nom}} < M_{HW}g - w_{f*}
$$

Static map

 \blacktriangleright At equilibrium we find:

$$
y(\theta) = \begin{cases} -k_{\theta}\theta, & \text{Phase I} \\ \frac{\omega_{\text{bit}} - K_{\text{a}}k_{\theta}}{K_{\text{a}} + \omega_{\text{bit}}k_{\text{v}}} \theta + K_{\text{y}}, & \text{Phase II} \\ -k_{\theta}\theta + d_{\text{b}}\omega_{\text{bit}}, & \text{Phase III} \end{cases}
$$

$$
K_{y} = \frac{\omega_{\text{bit}}}{K_{a} + \omega_{\text{bit}} K_{v}} (M_{HW}g - w_{0}^{nom} - w_{f*})
$$

 \blacktriangleright Required assumptions:

1.
$$
0 < k_{\theta} < \frac{\omega_{\text{bit}}}{K_a}
$$
\n2.
$$
w_0^{\text{nom}} < M_{HW}g - w_{f*}
$$

 \blacktriangleright Then convergence to Phase II/III transition as a peak

Simulation

Drilling response with extremum seeking control started at 120 seconds.

Bibliography

- George Boyadjieff, Dave Murray, Alan Orr, Mike Porche, and Peter Thompson. Design Considerations and Field Performance of an Advanced Automatic Driller. In *SPE/IADC Drilling Conference*. Society of Petroleum Engineers, apr 2003. doi: 10.2118/79827-MS. URL <http://www.onepetro.org/doi/10.2118/79827-MS>.
- Emmanuel Detournay, Thomas Richard, and Mike Shepherd. Drilling response of drag bits: Theory and experiment. *International Journal of Rock Mechanics and Mining Sciences*, 45(8):1347–1360, dec 2008. ISSN 13651609. doi: 10.1016/j.ijrmms.2008.01.010. URL <http://linkinghub.elsevier.com/retrieve/pii/S1365160908000245>.
- Fred E. Dupriest and William L. Koederitz. Maximizing Drill Rates with Real-Time Surveillance of Mechanical Specific Energy. *SPE/IADC Drilling Conference*, 2005. doi: 10.2118/92194-MS. URL <http://www.onepetro.org/doi/10.2118/92194-MS>.
- Miroslav Krstić and H-H. Wang. Stability of Extremum Seeking Feedback for General Nonlinear Dynamic Systems. Automatica, 36: 595–601, 2000. doi: 10.1016/S0005-1098(99)00183-1.
- Eric Maidla, William Maidla, John Rigg, Michael Crumrine, and Philipp Wolf-Zoellner. Drilling Analysis Using Big Data has been Misused and Abused. In *IADC/SPE Drilling Conference and Exhibition*. Society of Petroleum Engineers, mar 2018. doi: 10.2118/189583-MS. URL <http://www.onepetro.org/doi/10.2118/189583-MS>.