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How to optimize drilling parameters?

I Optimal drilling parameters are dependent on changing
conditions.

I Varies between wells and from stand to stand.

Figure: Net ROP correlation for 36 wells (Maidla et al. (2018)).
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ROP and bit foundering
I Drilling becomes inefficient beyond certain WOB (bit

foundering).

I Founder point dependent on cutter sharpness, rock
properties, bit cleaning etc.

I Optimal WOB constantly changing.

Figure: Bit foundering in laboratory tests (left) due to Detournay et al.
(2008) and as seen in the field (right) due to Dupriest and Koederitz
(2005).
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How to optimize drilling parameters?

Hypothesis:

1. Optimal drilling parameters cannot be found solely from
data-analysis and modeling ahead of time.

2. It must take the observered conditions of the current
operation into account and adapt accordingly.
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Proposed approach: Extremum seeking control

Arbitrary unknown quadratic function

θ f(θ)

asin(ωt)

k

s
+

+θ̂

1. Add periodic perturbance to input
2. Integrating the product of perturbation and output.
3. In phase -> Increase, out of phase -> Decrease.
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Arbitrary unknown quadratic function (Krstić and
Wang, 2000)

f * + (θ - θ*)2
f ''

2

θ f(θ)

asin(ωt)

k

s
+

+θ̂

θ̃ = θ̂ − θ∗ (1)

dθ̃
dt

= ka sin(ωt)
[
f ∗ +

f ′′

2

(
θ̃ + a sin(ωt)

)2
]

(2)
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Weight on bit control in drilling

Top drive

Drill lines

Travelling block

Drill floor

Drill string

1. Top drive suspended by
travelling block

2. Travelling block moved up
and down by spooling drill
lines

3. Hanging weight of drilling
system measured as force
at deadline (hook load)
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Block diagrm

hook load
set-point

Auto-
Driller

Drilling-
system

measured hook load

block velocity
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ESC scheme

hook load
set-point

Auto-
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Drilling-
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Simulation model

Topside boundary: Block velocity

v(t , x = 0) = v0(t)

Distributed dynamics

∂w(t , x)

∂t
+ AE

∂v(t , x)

∂x
= 0

∂v(t , x)

∂t
+

1
Aρ

∂w(t , x)

∂x
= F + G

Bottom boundary: ROP

Mbv̇b = wb(vb,wL)− wL +
ρ̄

ρ
Mbg,
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Bit-rock interaction

Approximation of weight on bit – ROP relation:

w (N/mm)
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I Assume constant rotation ωbit:

d(t) =
vb(t)
ωbit

(3)

I Weight on bit wb(d):
wb ∈ [0,wf∗], d = 0
wb = wf∗ + Kad , db > d ≥ 0
wb ∈ [wf∗ + Kadb,∞], d ≥ db
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Auto-driller (Boyadjieff et al., 2003)

I Control hook-load to wsp
0 by PI

feedback:

v0(t) =Kp(w0(t)− wsp
0 )

+ Ki

∫ t

0
(w0(τ)− wsp

0 )dτ

I Given wsp
0 corresponds to a

steady-ste v0 =ROP.
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ESC scheme

hook load
set-point

Auto-
Driller

Drilling-
system

nominal
hook load

θ
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+

y(θ)ESC
algorithm

measured hook load

block velocity
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_

I System maps θ to y(θ).
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Static map

I At equilibrium we find:

y(θ) =


−kθθ, Phase I
ωbit−Kakθ
Ka+ωbitkv

θ + Ky , Phase II
−kθθ + dbωbit, Phase III

Ky =
ωbit

Ka + ωbitkv
(MHW g − wnom

0 − wf∗)

I Required assumptions:
1. 0 < kθ < ωbit

Ka
2. wnom

0 < MHW g − wf∗

I Then convergence to Phase II/III transition as a peak
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Simulation
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Drilling response with extremum seeking control started at 120
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